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Polyvinyl Alcohol/Chitosan Single-Layered and Polyvinyl Alcohol/Chitosan/
Eudragit RL100 Multi-layered Electrospun Nanofibers as an Ocular Matrix
for the Controlled Release of Ofloxacin: an In Vitro and In Vivo Evaluation
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Abstract. A novel nanofiber insert was prepared with a modified electrospinning method
to enhance the ocular residence time of ofloxacin (OFX) and to provide a sustained release
pattern by covering hydrophilic polymers, chitosan/polyvinyl alcohol (CS/PVA) nanofibers,
with a hydrophobic polymer, Eudragit RL100 in layers, and by glutaraldehyde (GA) cross-
linking of CS-PVA nanofibers for the treatment of infectious conjunctivitis. The morphology
of the prepared nanofibers was studied using scanning electron microscopy (SEM). The
average fiber diameter was found to be 123 ± 23 nm for the single electrospun nanofiber with
no cross-linking (OFX-O). The single nanofibers, cross-linked for 10 h with GA (OFX-OG),
had an average fiber diameter of 159 ± 30 nm. The amount of OFX released from the
nanofibers was measured in vitro and in vivo using UV spectroscopy and microbial assay
methods against Staphylococcus aureus, respectively. The antimicrobial efficiency of OFX
formulated in cross-linked and non-cross-linked nanofibers was affirmed by observing the
inhibition zones of Staphylococcus aureus and Escherichia coli. In vivo studies using the OFX
nanofibrous inserts on a rabbit eye confirmed a sustained release pattern for up to 96 h. It
was found that the cross-linking of the nanofibers by GAvapor could reduce the burst release
of OFX from OFX-loaded CS/PVA in one layer and multi-layered nanofibers. In vivo results
showed that the AUC0–96 for the nanofibers was 9–20-folds higher compared to the OFX
solution. This study thus demonstrates the potential of the nanofiber technology is being
utilized to sustained drug release in ocular drug delivery systems.
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INTRODUCTION

Bacterial conjunctivitis is a common infection, which
occurs in patients of all ages and requires emergency
treatment. Ofloxacin (OFX) is a fluoroquinolone antibacterial
agent, which is extremely effective against a wide variety of
bacteria including Gram-positive and Gram-negative micro-
organisms by inhibiting DNA gyrase (1, 2). Nanofibers have
been studied for ocular drug delivery due to their large
surface-to-volume ratio. These systems can also be introduced
into the conjunctival sac with effective contact with the ocular

tissue. Nanofibers could overcome one of the most important
challenges of eye drops which is the limitation of the cul-de-
sac volume (∼30 μL) for the administration of eye drop (3, 4).

Chitosan (CS) is a broadly used polymer to design ocular
drug delivery systems because of its unique biological
properties including antimicrobial activity, biodegradability,
and biocompatibility (5). Polyvinyl alcohol (PVA) is a
synthetic polymer which is biodegradable, harmless, and has
good biocompatible properties (6). Electrospinning of CS and
its derivatives is feasible by the addition of a flexible polymer
such as PVA which can offer advantageous effects on the
biological properties of blend fibers (7, 8). CS/PVA nanofi-
bers dissolve immediately when exposed to water making a
substance similar to that of a gelatinous material, which
provides an immediate release for the drug used. Therefore,
preparing the water-insoluble nanofibrous mat is desirable
and is possible by cross-linking the PVA hydroxyl groups with
the CS amino groups using chemical agents such as glutaral-
dehyde, which is a much more suitable cross-linking agent
than other aldehydes (9–11).

Several researchers have designed the methods of
preparation and evaluation of multi-layered nanofibers

1 Pharmaceutical Sciences Research Center, Health Institute,
Kermanshah University of Medical Sciences, Kermanshah, Iran.

2 Nano Drug Delivery Research Center, Health Technology Institute,
Kermanshah University of Medical Sciences, Kermanshah, Iran.

3 Department of Pharmacy, University of Huddersfield, Queensgate,
Huddersfield, UK.

4 Pharmaceutics Research Laboratory, School of Life Sciences,
University of Sussex, Brighton, UK.

5 To whom correspondence should be addressed. (e–mail:
smirzaeei@kums.ac.ir, a.nokhodchi@sussex.ac.uk)

AAPS PharmSciTech         (2021) 22:170 
DOI: 10.1208/s12249-021-02051-5

1530-9932/21/0000-0001/0 # 2021 The Author(s)

http://crossmark.crossref.org/dialog/?doi=10.1208/s12249-021-02051-5&domain=pdf


including a middle layer with drugs, covered by other layers
of various polymeric nanofibers such as Eudragit RL 100 (12–
15). There are several publications where researchers have
prepared and developed nanofibers for ocular delivery of
various drugs. Based on these studies, electrospinning is an
efficient method for developing nanofibers compared to other
methods like solvent-casting (16, 17). Different kinds of
topical ocular formulations of OFX inserts containing HPMC,
Eudragit RL-100, and Eudragit L-100 (18), microspheres in
situ gel (19), nanostructured lipid carriers modified with
chitosan oligosaccharide lactate (COL) (20), liposomes (21),
microemulsion (22), niosomes (23), chitosan-alginate nano-
particles (24), and poly(-caprolactone) fibers (25) have been
reported.

The purpose of this current study was to design and
characterize novel mucoadhesive single layer and multilayer
nanofibers containing a middle layer prepared by cross-linked
or non-cross-linked CS/PVA nanofibers loaded with the
potent anti-infective agent, OFX in this case, covered by
Eudragit RL100. These novel inserts are expected to prolong
drug release, increase ocular availability, and enhance patient
compliance by reducing the dosing frequency.

MATERIALS AND METHODS

Materials

Chitosan (70–58% deacetylated) was obtained from
Acros Organics (Fair Lawn, NJ, USA). Eudragit RL100 and
polyvinyl alcohol (PVA) (99% hydrolyzed, average MW =
89–98 kDa) were purchased from Merck (Darmstadt, Ger-
many). Ofloxacin was purchased from Sina Daru (Iran).
Acetic acid, glutaraldehyde, and methanol were purchased
from Merck (Darmstadt, Germany) and were of analytical
grade.

Preparation of Polymer Solutions and Nanofibers

CS/OFX/PVA solution was prepared by mixing 10 mL of
chitosan solution (4% w/v) in acetic acid (1% v/v) with 10 mL
of PVA solution (8% w/v) in distilled water and dissolving
OFX at 25°C under continuous stirring condition (300 rpm)
to obtain a final solution containing 2%, 4%, and 0.6% (w/v)
of CS, PVA, and OFX, respectively.

Eudragit RL100 solution (10% w/v) in methanol was
obtained using magnetic stirring at 300 rpm at 25°C. The one-
layer nanofiber (denoted as the OFX-O formulation) was
prepared using an electrospinning device (Fanavaran Nano-
Meghyas, Tehran) by loading the CS/OFX/PVA solution in an
injector and injecting the solution with a flow rate of 0.5 mL/h
under high voltage application (28 kV) toward a cylindrical
collector (10 cm diameter). The distance between the injector
and the collector was fixed at 15 cm, and the whole process
was performed at 25°C and 25% of relative humidity.

For the preparation of multi-layered nanofibers (denoted
as OFX-M), a specified amount of Eudragit RL100 solution
(10% w/v in methanol) was electrospun at a flow rate of 2
mL/h toward a cylindrical collector (10 cm diameter) covered
by aluminum foil; then, the core layer was prepared by the
spinning of CS/OFX/PVA solution and, lastly, the core layer
was covered with another Eudragit RL100 layer. The

electrospinning condition maintained the same as the one-
layer nanofiber. The experimental flow chart is described in
Fig. 1.

The cross-linking procedure was performed using the
method as explained by Zhou (26) with some modifications.
To cross-link the nanofibers in glutaraldehyde (GA) vapor,
the prepared formulations were placed in a desiccator
containing 15 mL of aqueous glutaraldehyde solution (50%,
v/v) at 25°C for 10 h (these were the OFX-OG and OFX-MG
formulations).

Characterization of Nanofiber Morphology

To investigate the morphology of the nanofibers, the
samples were dried at 25°C for 3 h and put on a metal stub
using adhesive tape, sputter-coated with gold, and then
observed under a scanning electron microscope (FE-SEM,
MIRA3, TESCAN, Czech Republic).

Fourier Transform Infrared Spectroscopy

FTIR spectra were observed by using the FTIR-
spectrometer (Shimadzu IR PRESTIGE-21, Japan). A vac-
uum desiccator was used to dry the nanofibers at room
temperature (25°C for 5 h). The samples were thereafter
mixed with micronized KBr powder and finally compressed
into discs using a manual tablet press.

Differential Scanning Calorimetry

To investigate the thermal properties of the prepared
nanofibers and evaluate the solid-state of the drug in the
nanofiber formulations before and after the cross-linking
procedure, the DSC analysis was performed. The specimens
(around 5 mg) were placed in an aluminum pan. The samples
were run under nitrogen gas flow, and the samples were
heated from 30 to 500°C with a scanning rate of 5°C/min (DT-
Q600 thermal analyzer, TA Instruments Inc., USA).

Drug Content Uniformity

To evaluate the drug content uniformity, 10-mg samples
were dissolved in 5 mL of acetic acid (1% v/v) for single-
layered nanofibers and a mixture of acetic acid (1% v/v) and
methanol in a 1:1 (v/v) ratio for the multi-layered nanofibers
at 100 rpm for 5–6 h to extract OFX from the nanofibers. The
drug content was evaluated at a wavelength of 284 nm by the
use of a UVmini-1240 spectrophotometer (Shimadzu, Japan)
(27). A calibration curve was constructed with an r2 value
of 0.9994 at a range of OFX concentrations from 0.781 to
25 μg/mL.

Thickness Measurement

The thickness of the nanofibers (n = 3) was evaluated by
a screw gauge with an accuracy of 0.01 mm at various spots of
samples.
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Moisture Uptake and Moisture Loss

To evaluate the moisture uptake, the nanofibers were
weighed after the electrospinning process and kept in a
desiccator with 79.5% relative humidity (RH) (RH was
generated by a saturated solution of aluminum chloride in
water under ambient temperature). Nanofibers were removed
and reweighed after 3 days, and the percentage moisture
uptake was calculated (28). To measure the moisture loss
percentage, nanofibers were weighed and then kept in a
desiccator with anhydrous calcium chloride to avoid any
moisture absorption. The samples were reweighed after 3
days, and the moisture loss percentage was estimated (28).
The moisture uptake and loss were measured using the
following formula:

Moisture uptake and loss %ð Þ

¼ initial wt:−final wt:j j
initial wt:

� 100 ð1Þ

Folding Endurance, Tensile Strength, and Swelling
Percentage

Folding endurance was evaluated by frequently folding
the 3 × 3-cm2 pieces of nanofibers at the same place manually,
till it breaks. The folding endurance is the average number (n
= 3) of folds in which the nanofibers could be folded at the
same place without breaking.

For the determination of tensile strength, one end of the
prepared insert (n = 3) was fixed to the movable clip and the
other end was fixed to the base plate (Santam STM1, Iran).
Using the movable clip which constantly moves upward, a
force was gradually added, and the nanofiber was pulled until
it was broken (refer to supplementary material Figure S1)
(29, 30). The specimen gage length was 20 mm, and the
testing rate was fixed at 1 mm/min. The tensile strength was
measured from the ultimate load before separation.

To determine the swelling index of the prepared
nanofibers, the samples were weighed initially and were then
kept in an agar gel plate containing 15 mL of 2% w/v agar at
37 ± 1°C. The nanofibers were reweighed after one hour. The

Fig. 1. a The experimental flow chart of single and multi-layered electrospun nanofibrous structures of
different formulations; b single-layered electrospun nanofiber (×50 magnification); c multi-layered
electrospun nanofibrous structures (×50 magnification) and d the cross-sectional views of the multi-layered
nanofibrous structures (×150 magnification). Note: OFX is ofloxacin; CS is chitosan; PVA is polyvinyl
alcohol; OFX-O is single-layered electrospun nanofiber before glutaraldehyde (GA) cross-linking; OFX-M
is multi-layered nanofiber before GA cross-linking; OFX-OG is single-layered electrospun nanofiber after
GA cross-linking; and OFX-MG is multi-layered nanofiber after GA cross-linking
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swelling index was calculated based on the following
equation:

%Swelling Percentage

¼ wt:of swollen insert−wt:of initial insert
wt:of initial insert

� 100 ð2Þ

In Vitro Antimicrobial Efficacy Test and Sterility Testing

Bactericidal effects of the prepared nanofibers were
determined by measuring the inhibitory zone diameter
against Staphylococcus aureus (ATCC 6538) as a Gram-
positive organism and Escherichia coli (ATCC 35218) as a
Gram-negative organism. The same swaps were fully soaked
with an aliquot (almost 100 μL) of the McFarland standard
suspension of microorganism (a McFarland Standard is a
chemical solution of barium chloride that is used to standard-
ize the approximate number of bacteria in a liquid suspension
by comparing the turbidity of the test suspension), followed
by spreading onto an agar plate uniformly (Caso-Agar,
Mercoplate®; Merck and Co.). Approximate bacterial sus-
pension per milliliter was 1.5 × 108 CFU/mL. Then, the
formulated nanofibers of OFX-O, OFX-M, OFX-OG, and
OFX-MG were cut into a diameter of 6 mm were placed on
the plates and incubation performed at 35°C for 24 h (31).

The sterility test was carried out under aseptic conditions
for the fungi, aerobic bacteria, and anaerobic bacteria
utilizing soyabean casein digest medium and thioglycolate
broth. Same blank pieces of nanofibers (1 × 1 cm2) were
immersed in the culture media and incubated at 35°C (25°C
for fungi) for 7, 14, and 28 days to investigate any
microorganism growth in case of contaminations.

Microbiological Assay Test

The microbiological assays were performed on Staphy-
lococcus aureus (ATCC 6538) using the standard disc
diffusion method. Tryptic soy agar (TSA) plates were used
to cultivate the bacteria. The spread-plate method was
utilized (32). The McFarland standard bacterial suspension
(almost 100 μL) was spread onto an agar plate uniformly by a
soaked swap before placement of the sterile paper discs.
Sterile paper discs with a diameter of 5 mm were soaked, 30
μL of the samples along with standard antibiotic containing
discs were placed in each plate, and the incubation was
performed at 35°C for 24 h. The mean diameter of the
inhibition zone surrounding the discs was determined in mm
using a Vernier caliper or a scale (0.1 mm) and recorded.

In Vitro Drug Release Study

A simple in-house laboratory in vitro drug release study
assembly was used to simulate the conditions of the ocular
cavity. The various nanofiber formulations (OFX-O, OFX-M,
OFX-OG, or OFX-MG) were placed inside a donor com-
partment containing 25 mL of pH 7.4 phosphate-buffered
saline (PBS). A dialysis membrane (cut off diameter 12,000
Da) was tied at one end of the donor compartment. Then, it
was placed from the tied end in the receptor compartment

contained 25 mL of the same buffer (to preserve the sink
condition). A volume of 2 mL of the OFX content diffused
from the dialysis membrane from the tested formulation
sample was taken at different time intervals from the receptor
compartment for analysis. This was replaced immediately
with a volume of 2 mL fresh PBS to maintain the sink
condition. The released drug (OFX) was measured using a
UV-Vis spectrophotometer (Shimadzu, Japan) at a wave-
length of 284 nm.

In Vitro Cytotoxicity Test

Cytotoxicity of the nanofibrous inserts was determined
against L929 (mouse fibroblast). Firstly, the cells were added
to each well of a 96-well tissue culture plate at a density of 4 ×
105 cells/mL in 200 μL medium per well for 72 h. Dulbecco’s
modified Eagle’s medium (DMEM/F12), medium (1:1 v/v,
Gibco, Paisley, Strathclyde, UK), supplemented with 10%
fetal bovine serum (Gibco Invitrogen S.r.l., Milan, Italy), 100
U/mL penicillin, and 100 μg/mL streptomycin in a humidified
incubator at 37°C with 5% CO2 were used.

A certain row of 24-well plates without installation of
nanofibers was considered as the control. OFX nanofibers
with various concentrations of OFX in the medium (corre-
sponding to 12.5, 25, 50, or 100 μg/mL OFX) were placed in
the other wells. Thirty microliters of the medium and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
(MTT) assay was placed into all of the wells and incubated
for 4 h. Of DMSO solution, 150 μL was placed into the wells
and the plate observed by the microplate reader. The
absorbance ratio of sample cells to control cells measured at
the wavelength of 560 nm was then calculated. All experi-
ments were carried out in triplicate (mean ± SD, n = 3).

In Vivo Studies and Ocular Irritation Study on Rabbit Eyes

To evaluate the irritancy of nanofibers, the Draize test
was adopted. One of the rabbits’ eyes received sterile inserts
(inserts were prepared in aseptic conditions followed by
40 min exposure to UV light) formulations (OFX-O, OFX-
M, OFX-OG, or OFX-MG), while the other eye was treated
with sterile PBS as a control for. The eyes were observed for
7 days for any sign of irritancy including abnormal discharge,
congestion, and redness of the conjunctiva. Corneal opacity
and irritation were graded using the scoring system consid-
ered in guidelines for ocular irritation study between 0 and 2
showing the intensity of irritation (33).

Permission for the use of animals was obtained from the
animals’ ethics committee of Kermanshah University of
Medical Sciences (Approval No. IR.KUMS.REC.1396.305).
Twelve New Zealand white rabbits weighing 3.8–4.1 kg were
used in the experimental and control groups. A punch of
nanofibrous inserts (estimated to contain about 20 mg for
single-layered and 60 mg for multi-layered nanofibers,
respectively) and OFX solution with a drug content of 3%
w/v for multi-layer and 9% w/v for one-layer nanofibers used
as the standard was introduced into the rabbit’s conjunctival
sac. At the time of sampling, 50 μL of sterile PBS was poured
into the eyes of the rabbit and the tears collected by the
sterile paper discs. These discs were transferred directly onto
the culture medium, and the amount of drug remaining in the
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paper disks was measured by the microbial assay method as
explained earlier.

RESULTS AND DISCUSSION

Evaluation of Ocular Inserts

CS/PVA nanofibers were successfully manufactured by
electrospinning. The process of manufacturing the ocular
inserts with single-layered and multi-layered nanofibrous
structures is demonstrated in Fig. 1. The amount of the
loaded OFX in the nanofibers was 3–9% w/w which is higher
than that of commercial conventional (eye drop formulation
with 0.3% w/w).

It was interesting to note that the entrapment efficiency was
found to be > 95% for all the 4 formulations (OFX-O, OFX-M,
OFX-OG, or OFX-MG) (Table I). The high entrapment efficiency
is attributed to the technique usedwhich involves the incorporation
of OFX into the CS/PVA nanofibers. Electrospinning leads to the
formation of fibers with higher free space and porosities between
nanofibers which results in higher entrapment efficiency which is
required for the sustain release pattern (34). This high drug
entrapment efficiency allows using smaller inserts which can
enhance patient compliance for self-administration of the inserts.

The physicochemical parameters related to the prepared
OFX inserts like thickness, swelling, moisture uptake, mois-
ture loss, folding endurance, and tensile strength were also
evaluated and displayed in Table I. The nanofibers had a
suitable thickness from 0.075 ± 0.002 to 0.095 ± 0.002 mm. As
reported in previous studies, commercially manufactured
ocular inserts of Ocusert® possessed 0.300 mm thickness
(33). Hence, the prepared nanofibers with less than 0.1 mm
thickness were expected to be non-irritant to the eyes over
ocular administration. All the prepared nanofibers were of a
suitable thickness and hence expected not to irritate the eyes
over ocular administration due to a higher thickness. The
OFX nanofibers showed appropriate folding endurance,
which indicated that these systems are adequately flexible
and can simply be inserted into the conjunctival sac. The
OFX nanofiber inserts with GA vapor exposure showed
higher flexibility and suggests a potential link between the
cross-linking of CS/PVA nanofibers and increasing their
strength. The enhanced ultimate flexibility showed that
cross-linking by GA vapor can make CS/PVA nanofibers
more stable and mechanically strong. In fact, having a rigid
web because of strong inter-fiber bonding between
nanofibrous structures could often happen at the intersection
points. This can enhance the physical and mechanical
characteristics of the cross-linked fibers (35, 36). The reported
tensile strength for ocular formulations was between 1 and
30 MPa for different formulations. The OFX-MG nanofiber
showed the highest tensile strength. The reason behind the
increased flexibility could be due to the presence of the CS/
PVA layer made from cross-linked nanofibers and the
presence of covering layers which were made from the
Eudragit nanofibers (14).

The degree of the swelling has a significant effect on the drug-
releasing behavior of the nanofibers. The swelling degree was
lower in the cross-linked nanofibers (OFXOG and OFX-MG)
compared to the non-cross-linked counterparts (OFX-OandOFX-
M). This pattern could be due to the cross-linking of chitosan, PVA,

and CS/PVA and the enhancement of intermolecular bonding
which result in the reduction of the degree of swelling, and the rate
of drug release (36) Furthermore, Eudragit RL100 nanofibrous
layers are relatively hydrophobic in nature, hence the lower
amount of tear fluid absorbed leading to the decreased degree of
swelling observed in the multi-layered nanofibers compared to
single-layered nanofibers.Moisture uptake percentages were in the
range of 0.52 ± 0.01 to 1.12 ± 0.02%, and the amount of moisture
loss was found in the range of 0.67 ± 0.02 to 1.24 ± 0.05% (Table I).
Based on these results, it was revealed that the prepared nanofibers
have good physical stability in conditions with various moisture
contents.

Fourier Transform Infrared Spectroscopy

The FTIR spectra of the OFX nanofibers, chitosan, PVA,
and ofloxacin are shown in Fig. 2. The FTIR spectrum of
ofloxacin showed its characteristic peaks at ~1006 cm−1 for C-
F, 1712 cm−1 for C=O, and 3400 cm−1 for OH. The
appearance of OFX characteristic peaks in the nanofibers
confirmed the presence of ofloxacin inside in nanofibers
structure. Some characteristic bands for PVA and chitosan
in the prepared OFX nanofibers were consistent with the
literature data (37). The vibrational peak appearing at 848.68
cm−1 was attributed to C–H rocking mode of PVA and also
the absorption peak at 1654 cm−1 was assigned to the amide
type I of chitosan. ACH and CH symmetric and asymmetric
stretching vibrations for OFX nanofibers appeared at 2859
cm−1 and 2927 cm−1. The absorption bands in the FTIR
spectra of chitosan/PVA nanofibers for OH and NH appeared
at 3360 cm−1 and 1589 cm−1, which confirmed the structure of
the CS/PVA nanofibers with hydrogen bonding (38, 39).

Decreasing of the peak intensity at 3360 cm−1 of cross-
linked nanofibers (OFX-OG and OFX-MG) occurred with
the cross-linking reaction which could be due to the reduction
of amino and hydroxyl groups. The peaks at 1598 cm−1

related to NH2 were mostly eliminated for the cross-linked
OFX nanofibers which are indications of engaging the amino
group in chitosan following GA cross-linking. These results
indicated the successful occurrence of cross-linking reaction
between PVA/CS nanofibrous structure and GA (40, 41).

The spectra produced by FTIR for the Eudragit RL100
are also presented in Fig. 2. It can be observed that there are
strong bands at 1157 cm–1 and 1265 cm–1 due to the stretch of
carbonyl (ester) groups present in the Eudragit. In the multi-
layered nanofibers (OFX-M and OFX-MG), the ester vibra-
tion group of Eudragit RL100 was observed at 1157 and 1261
cm−1.

Differential Scanning Calorimetry

The DSC analysis was carried out to observe the phase
transition and thermal properties of drug and polymers in the
nanofibrous structures. The DSC traces of all excipients and
materials used in the preparation of nanofibers are shown in
Fig. 3A. The thermograph of PVA showed the glass transition
at 59°C and the melting peak of PVA at 190°C (42). Pure
chitosan exhibited a broad endothermic peak at around 70°C
related to loss of water and an exothermic peak at around
300°C related to chemical decomposition (43). Eudragit DSC
traces showed glass transition temperature at around 65°C
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(44). The DSC traces of pure drug (OFX) showed an
endothermic peak around 273°C which is its melting point
followed by several small endothermic peaks which could be
due to the degradation of the drug at high temperature.

Figure 3 B shows that the sharp endothermic peak of OFX in
nanofibers is not detectable which could be due to the
molecular dispersion of the drug in the nanofibers or the
amorphous state of the drug in nanofibers (25). In addition,

Table I. Physicochemical Parameters of the Ocular Inserts of Ofloxacin Nanofibers (Mean ± SD, n = 3)

Formulation Thickness
(mm)

Folding
endurance

Ten s i l e s t r eng t h
(MPa)

Entrapment efficiency
(%)

Swelling
(%)

Moisture loss
(%)

Moisture uptake
(%)

OFX-O 0 . 0 8 4 ±
0.004

183 ± 3 2.4 ± 0.2 95.3 ± 0.8 1 3 6 . 3 ±
4.5

1.24 ± 0.05 1.12 ± 0.02

OFX-M 0 . 0 9 5 ±
0.002

209 ± 2 10.6 ± 1.0 97.7 ± 0.9 11 6 . 9 ±
2.3

1.16 ± 0.02 9.05 ± 0.04

OFX-OG 0 . 0 7 5 ±
0.002

194 ± 5 3.2 ± 0.5 96.3 ± 0.7 1 0 7 . 5 ±
2.8

0.90 ± 0.02 0.64 ± 0.06

OFX-MG 0 . 0 9 3 ±
0.002

214 ± 5 11.7 ± 1.2 98.9 ± 0.6 92.5 ± 3.9 0.67 ± 0.02 0.52 ± 0.01

OFX-O single-layered electrospun nanofiber before GA cross-linking, OFX-OG single electrospun nanofiber after GA cross-linking, OFX-M
multi-layered nanofiber before glutaraldehyde (GA) cross-linking, OFX-MG is multi-layered nanofiber after glutaraldehyde (GA) cross-
linking

Fig. 2. FTIR spectra of chitosan, PVA, ofloxacin, Eudragit RL100, OFX-O, OFX-OG,
OFX-M, and OFX-MG nanofibers. Note: PVA is polyvinyl alcohol; OFX-O is single-
layered electrospun nanofiber before GA cross-linking; OFX-OG is single-layered
electrospun nanofiber after GA cross-linking; OFX-M is multi-layered nanofiber before
glutaraldehyde (GA) cross-linking; and OFX-MG is multi-layered nanofiber after
glutaraldehyde (GA) cross-linking
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the endothermic peak observed for pure PVA at 200 C is
disappeared from the DESC traces of nanofibers which could
be due to the non-crystalline structure of nanofibers formed
as a result of fast solidification in the electrospinning (45, 46).

Characterization of Nanofiber Morphology

SEM images of CS/PVA nanofibers before (OFX-O) and
after GA cross-linking (OFX-OG) are shown in Fig. 4. As
seen in Fig. 4, continuous, uniform nanofibrous structures (no
beads), and randomly oriented fibers were obtained. The
cross-linked nanofibers (159 ± 30 nm) had a greater diameter
compared to the non-cross-linked nanofibers (123 ± 23 nm).
The reason behind the increased diameter seems to be the
swelling of the nanofibers during the cross-linking process
with the GA (Fig. 4 a and b). The cross-linking reaction forms
covalent bonds between chitosan-chitosan, chitosan-PVA,
and PVA-PVA by the GA (Fig. 4c).

The multi-layered nanofibers before the cross-link
(OFX-M) and after cross-link (OFX-MG) are shown in Fig.
5. All SEM images showed bead free structure. Comparing all
the layers before cross-linking for OFX-M showed that the

top layer which contains Eudragit RL100 (Fig. 5(b)) has a
higher average diameter in comparison to the core CS/PVA
layer (Fig. 5(c)) and bottom layer (Fig. 5(d)). In the case of
OFX-MOG (after cross-linking with GA), the core layer (Fig.
5(g)) showed a higher average diameter compared to top
(Fig. 5(f)) and bottom layers (Fig. 5(h)).

In Vitro Cytotoxicity Test

The results indicated that the viability of L929 cells
(mouse fibroblasts) could decrease with increasing OFX
concentration in the OFX nanofibers formulations (OFX-O,
OFX-M, OFX-OG, or OFX-MG) (Fig. 6a). As a result, the
nanofibers after GA cross-linking indicated relatively reduced
cell viability in comparison with the non-cross-linked nanofi-
bers. Although the nanofibers were washed, it seems that due
to the presence of the trace amount of residual GA on the
surface of cross-linked nanofibers, the viability was decreased.

Based on the previous studies, the cell viability > 70%
could be an indication of non-irritant formulations (47). OFX-
OM showed less reduction in cell viability in comparison with
OFX-O because of covering CS/PVA layer by Eudragit

Fig. 3. DSC traces of a all excipients used in the preparation of nanofibers, b non-cross-
linked (OFX-O and OFX-M), and cross-linked (OFX-OG and OFXMG)formulations
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RL100 layers. This study showed that the viability of cells was
more than 70% in all of OFX nanofibers, with various
concentrations of OFX in the medium (corresponding to
12.5, 25, 50, or 100 μg/mL OFX); hence, OFX nanofibers can
be utilized for ocular drug delivery as a safe carrier system
due to low cell cytotoxicity and good biocompatibility of the
prepared nanofibers.

In Vitro Antimicrobial Efficacy Test and Sterility Testing

The inhibitory zones for the nanofibers are shown in
Fig. 6 b and c. The average inhibitory zone for OFX-M,
OFX-O, OFX-MG, and OFX-OG was measured to be 28 ±
1, 39 ± 1, 29 ± 1, and 40 ± 2 mm for S. aureus and 36 ± 1, 41
± 1, 35 ± 1, and 41 ± 1 for E. coli, respectively.

The results showed clear inhibitory zones to be found
around all of the nanofibers for both S. aureus and E. coli.
There were bigger inhibitory zones on E. coli cultures
compared to S. aureus, however, the inhibitory efficacy of
OFX against S. aureus was still retained (Fig. 6b, c). The
antibacterial effect of GA on E. coli activity has been
reported (48). This test also showed that there were no
significant differences between the antibacterial activity of
cross-linked nanofibers and non-cross-linked nanofibers. This
may be because most of the groups with antibacterial activity
in CS did not react with the aldehyde groups of GA, thus
preserving their antibacterial efficacy.

A previous study reported that cross-linked CS/PVAwith
GA had suitable antibacterial efficacy for applications in drug
delivery (49). Smaller inhibitory zones were observed on
S. aureus cultures and E. coli for multi-layered nanofibers
(OFX-M, OFX-MG formulations) compared to single-
layered nanofibers (OFX-O, OFX-OG). These smaller inhib-
itory zones may be due to the covering of the CS/PVA layer
containing antibiotics by Eudragit RL100 layers and the
reduction of OFX release rate as a result. The OFX
nanofibers were sterilized by UV radiation, and sterility
testing was performed under aseptic conditions; as such,
there was no evidence of the growth of fungi and bacteria in
the culture media.

In Vitro Drug Release Study

The results indicated that OFX nanofibers can control
drug release up to about 103 h (Fig. 7). The OFX-O
formulation containing the non-cross-linked CS/PVA one-
layered showed nearly 93.8% drug release, and OFX-M
formulation containing the non-cross-linked CS/PVA multi-
layered showed nearly 84.17% release of the drug. This value
was much smaller for OFX-OG containing the cross-linked
CS/PVA one-layered (50.26%) and OFX-MG containing the
cross-linked CS-PVA multi-layered nanofibers (39.82%) at
the end of 103 hours (Fig. 7).

Two important factors affected the prolongation of the
OFX release from inserts: (1) covering the CS/PVA layer

Fig. 4. SEM images of CS/PVA nanofibers a before GA cross-linking (OFX-O formulation) and b after
GA cross-linking (OFX-OG formulation) and c schematic representation of cross-linking reactions form
bonds between chitosan, PVA, and GA
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containing the OFX drug by the Eudragit RL100 layers and
(2) GA cross-linking the CS/PVA nanofibers. In the case of
CS/PVA nanofibers, the immersion in tear fluid causes the
instant dissolution of the nanofiber into a substance similar to
that of gelatinous material. This can therefore limit the usage
of a CS/PVA layer in the eye tissues. To improve its
mechanical properties, chemical cross-linking with GA vapor
was utilized due to the bonds formed between the reactive
side groups of CS (amino groups) and PVA (hydroxyl groups)
(50, 51). This reaction occurred from the surface to the inside
of the layers by the GA. The resultant intermolecular forces,
therefore, leads to a reduction in the swelling pace and also
the drug delivery rate (51).

Eudragit RL100 polymer can thus effectively provide
prolonged and sustained release of OFX from multi-layered
nanofibers (OFX-M, OFX-MG formulations). Indeed, com-
binations of hydrophilic and hydrophobic nanofiber layers
can control the drug release and therefore reduce the toxicity
as a result of the fast release of drugs (13). These nanofibrous
structures can be useful for the management of ocular

bacterial infections when the prolonged release of an
antibiotic is essential. Although the identical formulations
had not been prepared in any previous studies, a similar study
has designed and prepared OFX-loaded chitosan/PVA nano-
fibers for hernia repair (42). They showed a similar two-phase
release of OFX from nanofiber during 28 days with a burst
release in the first 8 h (52). For the ophthalmic anti-infective
formulations, 1 week of drug release could be suitable.

Ocular Irritation and In Vivo Studies

During the Draize irritancy test, no symptoms of ocular
irritation such as inflammation, the opacity of the cornea,
conjunctival redness, and discharge were observed. Redness
of conjunctivae was however observed after administration of
the cross-linked nanofibers with GA, which was reduced and
vanished over time. There is either negligible or no irritation
and inflammation of the eye for all the tested eyes with all the
formulations compared to control eyes which suggested that
the OFX nanofibers were well-tolerated.

Fig. 5. SEM images of multi-layered electrospun nanofibrous structures before GA cross-
linking (OFX-M formulation): a the cross-section views of multi-layered electrospun
nanofibrous structures, b top Eudragit RL100 layer, c CS-PVA-OFX at the core, d bottom
Eudragit RL100 layer, e the cross-section of multi-layered electrospun nanofibrous
structures after GA cross-linking (OFX-MG formulation), f top Eudragit RL100 layer,
g CS-PVA-OFX at the core, and h bottom Eudragit RL100 layer
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The OFX nanofibers were inserted into the rabbits'
conjunctival sac without the application of any invasive
method. The concentration of released OFX from nanofibers
in the tear fluid was determined by microbiological assay
(Staphylococcus aureus) using the standard curve. This
method was reproducible, linear, precise, and simple. More-
over, this method does not require toxic solvents and
specialized equipment. Drug released from nanofibers (96 h
reading) and pure commercial OFX standard demonstrated
substantially similar clear inhibitory zones.

The lower limit of quantitation for OFX was 7.8 μg/mL.
The measured concentration of OFX solution after 2 h was 24
± 2 μg/mL. However, the measured concentrations were
reported to reach below the limit of quantification (LOQ)
after 10 h. Maximum concentrations (Cmax) of 60 ± 4 μg/mL
and 37 ± 6 μg/mL were measured at 5 h after OFX-OG and
OFX-MG administration, respectively, followed by a
steady release in tear fluid for 96 h. The non-cross-
linked OFX nanofibers indicated a maximum concentra-
tion (Cmax = 202 ± 15 μg/mL (OFX-O) and 90 ± 5 μg/mL

Fig. 6. a Cell viability after treatment with OFX nanofibers (single-layered (OFX-O, OFX-OG) and
multilayered (OFX-M, OFX-MG) electrospun nanofibers) with various concentrations of OFX in medium
(corresponding to 12.5, 25, 50, or 100 μg/mL OFX) (n = 6, mean ± SD). Inhibition growth area of
singlelayered (OFX-O, OFX-OG) and multi-layered (OFX-M, OFX-MG) electrospun nanofibers; areas of
inhibited growth of b Staphylococcus aureus and c Escherichia coli; note: scale 1 mm
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Fig. 7. In vitro cumulative release behavior of ofloxacin from the various formulations: OFX-O
(single-layered electrospun nanofiber before glutaraldehyde (GA) cross-linking), OFX-M (multi-
layered nanofiber before GA cross-linking), OFX-OG (single electrospun nanofiber after GA
cross-linking), and OFX-MG (multi-layered nanofiber after GA cross-linking)
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(OFX-M)) followed by a steady release in tear fluid for
96 h (Fig. 8). These were significantly higher compared to
the cross-linked OFX nanofibers. OFX-O demonstrated
the highest Cmax and shortest Tmax compared to the other
formulations (Table II), which led to the highest rate of
absorption. The lowest Cmax was related to OFX solution,
which could be attributed to the fast removal of drugs
from the eye surface and decreased corneal contact time
for the drug from OFX solution.

AUC0–96 of the drug in OFX-O, OFX-M, OFX-OG,
OFX-MG, and OFX solution was 3191 ± 117, 2320 ± 60, 1597
± 32, 1361 ± 20, and 147 ± 4 μg h/mL, respectively. These
results indicated that the cross-linked OFX nanofibers
containing OFX-OG and OFX-MG showed a 10.83-fold and
9.23-fold increase in the AUC0–96 compared with OFX
solution, respectively. While the non-cross-linked OFX nano-
fibers containing OFX-O and OFX-M showed a 21.64-fold
and 15.74-fold increase in AUC0–96 compared to the OFX
solution, respectively. The mean residence time (MRT) of
OFX-MG was enhanced significantly compared to the other
formulations and the OFX solution. This was attributed to the

covering of the CS/PVA layer containing the drug by the
Eudragit RL100 layers and GA cross-linking.

The minimum inhibitory concentration (MIC90%) of
OFX against microorganisms which is infective to the eye
including Gram-negative and Gram-positive was reported to
be 2 μg/mL (53). While the OFX solution only achieved tear
concentrations higher than the MIC90% for the 10 h after
instillation, OFX nanofibers remained higher than this level
for 95 h. The level of OFX was 9.98–13.96 μg/mL for OFX
nanofibers after 95 h after administration, which was 4.99- to
6.98-fold over the MIC. In fact, the prolonged drug release in
the precorneal tissue was observed through utilizing the
developed nanofibers. These carriers could reduce the
frequency of administration of OFX along with lowering the
required dose for achieving suitable therapeutic concentra-
tions compared to OFX solution. Similar to the current study,
a polycaprolactone-based nanofibrous formulation of
levofloxacin designed for ophthalmic administration has
released the drug in 30 days in the rat’s eye. The longer
release period is due to the more hydrophobic nature of the
polycaprolactone (54).
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Fig. 8. Plots of in vivo concentration (μg/mL) drug release for the various formulations:
OFX-O (single-layered electrospun nanofibers before GA cross-linking), OFX-M (multi-
layered nanofibers before GA cross-linking), OFX-OG (single-layered electrospun
nanofibers after GA cross-linking), OFX-MG (multi-layered nanofibers after GA cross-
linking). Dotted green line is the minimum inhibitory concentration of OFX against
microorganisms (MIC90%). Red insert shows an expanded view of the subtle differences
in the formulations post 25 min upon administration

Table II. Pharmacokinetic Parameters in Rabbit Tears After Drop Instillation of 50 μL of AZM Solution or OFX Fibers with Different
Formulations (mean ± SD, n = 6)

Formulation Cmax (μg/mL) Tmax (h) AUC0–96 (μg h/mL) MRT (h)

OFX-O 202 ± 15 2 3191 ± 117 24.5 ± 0.1
OFX-M 90 ± 5 5 2320 ± 60 28.8 ± 0.4
OFX-OG 60 ± 4 5 1597 ± 32 41.7 ± 0.5
OFX-MG 37 ± 6 5 1361 ± 20 43.4 ± 0.8
OFX Solution 24 ± 2 2 147 ± 4 4.7 ± 0.1

OFX-O single-layered electrospun nanofiber before GA cross-linking, OFX-OG single electrospun nanofiber after GA cross-linking, OFX-M
multi-layered nanofiber before glutaraldehyde (GA) cross-linking, OFX-MG is multi-layered nanofiber after glutaraldehyde (GA) cross-
linking, MRT mean residence time
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CONCLUSION

In the present study, electrospinning technology was success-
fully used for the preparation of single-layered and multi-layered
nanofibers with OFX incorporated into the CS/PVA layers.
Morphological characterization of the ofloxacin nanofibers re-
vealed highly homogeneous nanofibrous structures with a tight
connection between the individual nanofiber layers. Glutaralde-
hyde cross-linked and non-cross-linked nanofibers for all formula-
tions had an acceptable level of toxicity on cultured L929 (mouse
fibroblast) cells. TheOFXnanofibers could be placed in the cul-de-
sac of the rabbit eyes as an insert without any invasive methods or
surgery. There was not any sign of significant inflammation or
redness in the rabbits’ eyes. The drug release profile was evaluated
by a microbiological assay method using sterile paper discs which
are a non-invasive, cost-effective, and a simple method. The
developed OFX nanofibers formulations effectively retained the
drug concentration in the tear fluid of rabbits above the MIC90%
for up to 95 h. This eliminates the need for frequent installation of
the drug and enhances patient compliance.
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