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The AI algorithm was used to find the relationship between ionizable lipids and in 

vivo efficiencies of mRNA vaccines, which was validated by a mice study. The 

molecular dynamic simulation further provided mechanical details of lipid 

nanoparticle (LNP) formulation. 

Jo
urn

al 
Pre-

pro
of



 

 

Abstract Lipid nanoparticle (LNP) is commonly used to deliver mRNA vaccines. 

Currently, LNP optimization primarily relies on screening ionizable lipids by 

traditional experiments which consumes intensive cost and time. Current study 

attempts to apply computational methods to accelerate the LNP development for 

mRNA vaccines. Firstly, 325 data samples of mRNA vaccine LNP formulations with 

IgG titer were collected. The machine learning algorithm, lightGBM, was used to 

build a prediction model with good performance (R2 > 0.87). More importantly, the 

critical substructures of ionizable lipids in LNPs were identified by the algorithm, 

which well agreed with published results. The animal experimental results showed 

that LNP using DLin-MC3-DMA (MC3) as ionizable lipid with an N/P ratio at 6:1 

induced higher efficiency in mice than LNP with SM-102, which was consistent with 

the model prediction. Molecular dynamic modeling further investigated the molecular 

mechanism of LNPs used in the experiment. The result showed that the lipid 

molecules aggregated to form LNPs, and mRNA molecules twined around the LNPs. 

In summary, the machine learning predictive model for LNP-based mRNA vaccines 

was first developed, validated by experiments, and further integrated with molecular 

modeling. The prediction model can be used for virtual screening of LNP 

formulations in the future. 

KEY WORDS Lipid nanoparticle; Ionizable lipid; mRNA; Vaccine; Formulation 

prediction; Machine learning; LightGBM; Molecular modeling  

 

1. Introduction 

The global pandemic of coronavirus disease 2019 (COVID-19) has caused nearly 220 

million confirmed cases and more than four million deaths worldwide, according to 

the updated record by the World Health Organization (WHO). To suppress the 

prevalence of COVID-19, many pharmaceutical industries in multiple countries have 

developed vaccines with an unprecedented speed and are promoting their usage 

globally1. The BNT162b2 from BioNTech and Pfizer and mRNA-1273 from Moderna 
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were the first two vaccines approved by the US Food and Drug Administration (FDA) 

in November 2020 with the development period less than one year2,3 and impressively 

high preventing efficacy, 95% for BNT162b24 and 94.1% for mRNA-12735. Rapid 

development, high efficacy, and risk-free of insertional mutagenesis or infection 

induced by vaccine6,7 show a promising prospect for this vaccine platform. mRNA 

takes effect by first being delivered into cells and then translated to immunogenic 

antigens. There are many aspects that mRNA sequence can be engineered to influence 

its efficacy8,9, such as self-amplifying10,11, choice of untranslated region12,13, 

modification on nucleoside14,15, codon optimization16,17, and combination of encoded 

antigens18,19. Besides, administration routes also affect the immune effect8,20. 

However, a successful mRNA vaccine further requires a proper delivery system, such 

as the lipid nanoparticle (LNP). Both vaccines against COVID-19 adopt LNP as the 

delivery system.  

LNP-based mRNA vaccines usually consist of four types of lipids, cholesterol, 

distearoylphosphatidylcholine (DSPC), polyethylene glycol (PEG) -lipid, and 

ionizable lipid. Cholesterol adjusts the flexibility and fusogenicity of lipids during 

mixing, facilitating the LNP formation21. DSPC, the helper lipid, is related to LNP 

structure22,23, interfacial tension24, and helps mRNA release25. PEG-lipid influences 

the LNP stability24, size26 of LNP, and further impacts the potency27. The ionizable 

lipid, due to its cationic head group, should be the most critical ingredient. It 

dominates the binding to mRNA, interacting with the endosomal membrane and 

mRNA release28,29. Besides, a desired ionizable lipid should also show high 

biodegradability to ameliorate the adverse effect induced by lipid accumulation30. 

Traditionally, ionizable lipids are screened by synthesizing numerous lipids and 

testing their in vivo efficacy31,32. However, current experimental screening needs a 

large amount of cost, time, and materials.  

Machine learning (ML) is a branch of artificial intelligence, which is the science 

of enabling computers to learn knowledge without being explicitly programmed33. 
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After succeeding in areas such as machine translation and computer vision34, ML has 

been increasingly applied by pharmaceutical companies in recent years35. ML can 

explore the existing dataset and determine the relationship between the input and 

output parameters, wherein the former could present the formulation information and 

experimental conditions while the latter may indicate the formulation behaviors of 

interest. This approach is helpful in formulation prediction. Previous studies have 

successfully applied ML to predict the drug delivery systems, such as nanocrystals36, 

solid dispersion37, cyclodextrin complex38, and self-emulsifying drug delivery systems 

(SEDDS)39. In the case of SEDDS, the trained ML model predicted the molar 

composition of oils, surfactants, and cosurfactant where they can form self-emulsion, 

based on their physicochemical properties input, which helped to choose proper 

excipients for SEDDS formulation. 

Molecular dynamic (MD) simulation is another computational tool that can 

visualize and investigate the interaction among ingredient molecules and the 

environment from a physicochemical view. MD method has become a helpful tool for 

pharmaceutical scientists to obtain a mechanistic understanding of formulation 

behaviors40,41. Previous studies applied the MD method to investigate topics such as 

the aggregation of polymer–siRNA complex42 and the dissolution of solid dispersion37. 

In the case of the polymer–siRNA complex, the aggregation was simulated to be 

driven by the interaction between cationic groups on polymers and the negative 

backbone of siRNA. This aggregation stabilized the siRNA in the aqueous solution, 

reflected by the less altering major groove width of siRNA. Besides, the MD result 

also revealed the saturation molar ratio of polymers to siRNA. It resulted from 

mutually counteracting forces of electrostatic effect and steric crowding, which were 

influenced by siRNA length, cationic charge sites, and the shape of polymers. 

This work aimed to build an ML model to predict LNP formulations for mRNA 

vaccines against viruses. Data from publications were collected to build the model. A 

typical such study43,44 includes the information of mRNA sequence synthesis, LNP 
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preparation, treatment to subjects, and detection of the time course of binding IgG 

titer. The binding IgG titer is a surrogate of antibody concentration produced by the 

immune system after stimulation of antigen encoded by mRNA injected. The IgG titer 

is influenced by many factors dependent or independent on LNP formulation, as 

mentioned. Therefore, all information was needed to train an ML model, and the 

influence of LNP, mainly the ionizable structures, on IgG titer could be specifically 

untangled by the algorithm. Thus, the ML model was able to predict the LNP 

formulation. The prediction result was further validated by an in vivo experiment. 

Then, the MD simulation was used to investigate the interaction between mRNA 

molecule and lipid components in the microscope. This developed model will benefit 

the development of mRNA vaccines. 

 

2. Materials and methods 

2.1. ML modeling methods 

2.1.1. Data collecting and cleaning 

The data collecting and cleaning method are shown in Fig. 1. First, keywords of 

‘mRNA’, ‘vaccine’, ‘virus’ were used to retrieve literature from Web of Science and 

Scopus. After the initial screen, 65 studies using lipid-based formulation were 

maintained.  

After analyzing the first extracted data from 22 studies, the data intended for ML 

work were simplified, considering the numerical balance between input and predicted 

parameters. Thus, the eventual dataset only contained mRNAs encoding a single 

antigen45–50 and LNPs comprising DSPC, cholesterol, 

1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol (PEG-DMG), and various 

ionizable lipids51,30,47,52 (Fig. 1B). The included experiments all lasted for no longer 
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than one year, with no more than two doses of vaccination and without virus 

challenge test.  

The input parameters or features include antigen protein type, self-amplifying10,11, 

cap type, pseudouridine modification14, codon optimization16, the molar ratio between 

nitrogen on the ionizable lipid to phosphate on RNA (N/P ratio), structure of ionizable 

lipid, ionizable lipid fraction, DSPC fraction, PEG–lipid fraction, cholesterol fraction, 

subject type, population or strain, injection route, log10 dose, the second vaccination 

time, and IgG titer test time. Parameterization of ionizable lipid structure can be seen 

in the next section. Whether or not the mRNA sequences functioning as 

self-amplifying, containing pseudouridine, and undergoing codon optimization were 

assigned ‘1’ or ‘0’. The antigen protein type, cap type, subject type (human, primate, 

mice, etc.), population or strain (adult or elderly human, C57BL/6 or BALB/c mice, 

etc.), and injection route were deemed as multi-categorical variables. The other 

parameters were numerical variables. 

The output or predicted parameter was decided to be the binding IgG titer 

because this index reflected antibody concentration induced by vaccines, and the 

related data was the richest. Binding IgG titer is usually tested by enzyme-linked 

immunosorbent assay (ELISA), and it is the dilution-fold of tested serum containing 

antibodies that can still neutralize the antigen coated at the bottom of a 96-well plate. 

A high titer means the serum still can neutralize the virus even if it has been diluted to 

a high-fold. The collected IgG titers only contained the assays with coated antigens 

corresponding to mRNAs used in vaccines. For studies against influenza30,44,53, 

hemagglutination inhibition (HAI) titer is also often tested. Hemagglutination happens 

when red blood cells contact the influenza virus, and the addition of tested serum 

containing antibodies neutralizing the influenza virus would inhibit hemagglutination. 

Thus, HAI titer, similar to IgG titer, also reflects the antibodies’ concentration. 

Analysis of our data found a linear relationship (Supporting Information Fig. S1) 

between two titers [log10(IgG titer) = 1.0286 × log10(HAI titer) + 1.4103, R2 = 0.7986, 
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when HAI titer ≥ 1]. Thus, IgG titers transformed from HAI tests were also included 

if only HAI titers were available. The dose and the titers were transformed via log10 

function to shape the distribution closer to be normal. Eventually, there were a total of 

325 samples in the dataset.  

 

2.1.2. Structural representation of ionizable lipids 

In this study, the extended connectivity fingerprints54 (ECFP) were introduced to 

represent the ionizable lipid structural characteristics. ECFP is a bit string constituted 

by ‘1’ or ‘0’. Each bit of ECFP corresponds to a set of chemical substructures, and the 

‘1’ or ‘0’ indicates whether or not the compound contains it. ECFP shows good 

modeling fitting in cheminformatics and bioinformatics. The ionizable lipid ECFP 

(IL-ECFP) was generated by the RDKit package version 2020.09.1.0 in Python55. 

Ionizable lipids used in mRNA vaccine formulation have long chains. Thus, the ECFP 

radius was set to 3 to cover a chain segment with up to 7 atoms, larger than the regular 

ECFP4 structure (ECFP with a radius of 2). The ECFP sequence length was set to 1024.  

 

2.1.3. Data splitting strategy 

The whole dataset was split into two sets of training (260 data points) and validation 

(65 data points). Stratified random sampling was adopted to keep the same proportion 

of data points in each mRNA vaccine formulation38. The training set was used for 

training models, and the validation set was for turning hyperparameters to find the best 

model. Additionally, 10-fold cross-validation (CV) was used to evaluate the final 

generalization of machine learning models. 
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2.1.4. Evaluation criteria 

Mean absolute error (MAE), mean squared error (MSE), root mean squared error 

(RMSE), and determination coefficient (R2) are the metrics for evaluating regression 

model performance. MAE measures the mean absolute error between real labels and 

predictions. MSE indicates the mean squared error between real labels and predictions. 

RMSE indicates the root mean squared error between real labels and predictions. R2 

shows the correlation between real labels and predictions. They are defined as the 

following Eqs. (1)–(4): 

MAE =
∑ |𝑦�̂�−𝑦𝑖|𝑛

𝑖=1  

𝑛
                              (1) 

MSE =
∑ (𝑦�̂�−𝑦𝑖)2𝑛

𝑖=1  

𝑛
                              (2) 

RMSE = √
∑ (y�̂�−𝑦𝑖)2𝑛

𝑖=1  

𝑛
                             (3) 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦�̂�)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                            (4) 

where n is the number of data, 𝑦𝑖 is the ith real label, and 𝑦�̂� is the ith prediction. 

 

2.1.5. Hyper-parameters of lightGBM 

In recent years, the techniques and applications of machine learning have been driven 

by algorithmic advances and data accumulation. Diverse machine learning algorithms 

and structures have been tested to fit different types of correlations56,57. The gradient 

boosting decision tree (GBDT) framework-based ensemble learning algorithms are 

shown to have superior accuracies in both classification and regression problems on 

tabular data with pre-engineered features. A typical such algorithm is the lightGBM58. 

In the present study, the model was constructed to predict the titer concentration of 

mRNA vaccine immunological performance. The model was established by the 
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lightGBM package version 2.2.3 in Python. We searched 1000 hyperparameter 

combinations in the hyperparameter space. The hyperparameter configuration of 

lightGBM is that the learning rate is 0.018, the number of trees is 930, the subsample 

ratio is 0.783, the subsample ratio of columns is 0.394. The regularization terms 

(maximum of eight leaves for base learners and minimum of 12 samples in a leaf) were 

used to prevent the overfitting issue. The machine learning hyperparameters decide 

model selection and have impacts on model generalization. A random search method 

was used for lightGBM. It has been shown that random search is more efficient than 

grid search and manual search59. 

 

2.2. Experimental methodology 

2.2.1. mRNA synthesis 

Our laboratory has established a system to conveniently test the LNP delivery 

efficiency using mRNAs encoding the extracellular segment of human 

angiotensin-converting enzyme 2 [ACE2 (18-615)], human IgG Fc fragment, and an 

HiBit tag. The ectodomain of ACE2 fused with IgG Fc fragment makes it a long-lasting 

secreted protein60, which can be directly detected in the blood. A HiBit tag added to the 

C-terminus of the protein facilitates later protein detection. 

Our mRNA was synthesized in vitro by a T7 RNA polymerase mediated 

transcription system (IVT). The DNA template incorporates the 5ʹ and 3ʹuntranslated 

regions (UTRs) and a poly(A) tail. Pseudo UTP instead of natural UTP was used during 

IVT to reduce the immunogenicity of the mRNA. Cap1 is added co-transcriptionally to 

ensure the normal translation of mRNA. The pseudo UTP and cap1 were purchased 

from APExBIO Technology LLC. (Houston, TX, USA). We purified mRNA by oligo 

dT column, then diluted the mRNA in sodium citrate buffer to desired concentrations. 

The purity of mRNA was confirmed by gel electrophoresis. 
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2.2.2. LNP formulation and characterization  

DLin-MC3-DMA (MC3) and SM-102 were purchased from APExBIO. Cholesterol 

was purchased from AVT (Shanghai) Pharmaceutical Tech Co., Ltd. (Shanghai, China). 

DSPC and PEG2000-DMG were purchased from Avanti Polar Lipids Inc. (Alabaster, 

AL, USA). Lipids were dissolved in ethanol at molar ratios of 50:10:38.5:1.5 (ionizable 

lipid/DSPC/cholesterol/PEG2000-DMG). The mRNA was diluted in sodium citrate 

buffer (pH 3.0) to desired concentrations for final N/P ratios 3:1 and 6:1, respectively. 

We gave high-pressure to mix mRNA solution and lipid solution rapidly through a T 

mixer. Formulations were dialyzed against PBS (pH 7.4) in a dialysis cassette for 20 

hours. After dialysis, LNPs were passed through a 0.22 m filter, concentrated to a 

suitable concentration, stored at 4 °C, and used within a week. RiboGreen Assay from 

Invitrogen Corp. (Carlsbad, CA, USA) was used to quantify the mRNA in LNPs, 

particle size was determined by dynamic light scattering. The encapsulation efficiency 

of our LNP was around 90%, and the particle size was around 100 nm. 

 

2.2.3. Animal studies  

All animal experiments were performed under the ethical guidelines of Fudan 

University. Sixteen C57BL/6JGPt mice (eight weeks old, mixed-sex) were randomly 

divided into four groups, corresponding to four LNP formulations administrated 

(MC3-3:1, MC3-6:1, SM102-3:1, and SM102-6:1). LNPs diluted in PBS were injected 

into mice via the tail vein using a disposable syringe (15 g mRNA/dose). Tail vein 

blood was taken at 0, 4, 8, 24, 48, 72, 96, 168 h after injection with capillaries. The 

serum was separated by centrifugation at 6,000 rpm for 10 min. The ACE2 level in 

mice serum was measured using Nano-Glo HiBit Lytic Detection System from 
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Promega Corp. (Madison, WI, USA) following the manufacturer’s recommendations. 

Then the luminescence signal was detected on the microplate reader. 

 

2.2.4. Statistical analysis 

Means were compared using the unpaired t-test, and the area under the curve (AUC) 

was calculated after 168 hours of administration for all tests. Two-tailed P values <0.05 

were considered statistically significant and are shown in the figures as *P ≤ 0.05, **P ≤ 

0.005, ***P ≤ 0.001. Prism 8 (GraphPad Software, San Diego, CA, USA) was used. 

 

2.3. MD modeling methods 

2.3.1. Model building of the formulation systems  

The all-atom dynamic simulation method61,62 was performed to investigate the 

formation mechanism of LNPs. Molecular structures of two ionizable lipids (MC3 and 

SM-102), cholesterol, DSPC, and PEG2000-DMG, were manually built by Discovery 

Studio 2016 Client, as shown in Fig. 2. The mRNA nucleotide sequence consisted of 

the 32-mer poly(A) tail generated by the NAB package in AMBER (University of 

California, San Francisco, CA, USA). Poly(A) tail was chosen because it is generally 

added to all manufactured mRNA sequences8. The length of mRNA sequence for 

simulation was decided because of the sizes of eventual simulated systems limited to 

computer capacity. These molecules constituted five different simulated systems in 

total (Table 1). At first, mRNA in an aqueous solution in the absence of lipids (referred 

to as mRNA system) was observed. Then, MD simulation simulated the other four 

systems that consisted of a single mRNA, ionizable lipids, cholesterol, DSPC, 

PEG2000-DMG, and water. Lipids were added at the molar ratio of ionizable 

lipid/DSPC/cholesterol/PEG2000-DMG = 50:10:38.5:1.5, and the N/P ratio was 3:1 or 
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6:1. Both composition ratio and N/P ratio were generally seen in our collected data. In 

the mRNA system, sodium counterions were used to ensure electrical neutrality, while 

in the other LNP systems, chlorine counterions were added to the system.  

 

2.3.2. Simulation method 

The detailed simulation method was similar to the previous study37. All the simulations 

were carried out using AMBER 18 and AMBER Tools 18 software package. The 

FF14SB force field was used to model mRNA, and the GAFF force field was applied to 

model lipid molecules. For lipid molecules, the atom type and charge were described by 

the antechamber package63. The conformation of initially constructed systems may be 

far from their equilibrated state, and molecules may arrange too close, inducing 

unreasonably high energy in systems. Thus, minimization of systems was needed 

before the simulation to relax the structure and remove unreasonable contacts. First, the 

solute molecules were constrained, and only water molecules were minimized for a 

short time. Then the whole system underwent 20,000 steps of minimization. After 

minimization, systems were heated, and the Langevin thermostat64 was used to 

maintain the temperature at 300 K, while the Berendsen barostat65 was used to keep the 

pressure at 1 atm. All the systems were equilibrated at least 100 ns with a time step of 2 

fs to produce the simulated results.  

 

3. Results 

3.1. Data distribution and model performance of ML work 

The data collected included LNP and mRNA information as input features and IgG 

titer induced by vaccines at corresponding time points as output parameters for 

prediction. The data distributions of these parameters are overall uniform (Fig. 3 and 

4).  
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Table 2 shows that the ML model using the LightGBM algorithm presents a 

good performance. The dataset was first divided into the training set and validation set, 

with samples of 260 and 65, respectively. After training and tuning hyperparameters, 

the model shows impressive predictivity. For the training and validation set, the MAE 

and RMSE are around 0.2 and 0.3 log10 units, respectively, corresponding to the error 

commonly seen in the experiments. The R2 is above 0.9, showing this model has 

covered major factors resulting in the variation in the IgG titer. Moreover, additional 

10-fold cross-validation was performed. The whole dataset was divided into ten folds. 

One fold was served as the validation set and the rest as the training set for each 

iteration, and this process was repeated ten times. The average results of 10 iterations 

are also presented in Table 2. Although the MAE, MSE, and RMSE are slightly larger 

than those from the first training, they also show an accurate predictivity on 

experimental value.  

The next analysis determines the important input parameters or features that 

hugely influence the model. The top 7 important parameters are biological factors, 

including protein type, log10 dose, titer test time, population or strain, the second 

vaccination time, subject type, and injection route. The following parameters are 

formulation-related features, as shown in Fig. 5A. The codon optimization, 

self-amplifying, and uridine modification show the important role of mRNA sequence 

modification. Then, the formulation features of the N/P ratio and some IL-ECFPs 

present the LNP importance. The top 18 important positions among 1024 IL-ECFP 

and their corresponding specific substructure of ionizable lipid are shown in Fig. 5B. 

For the important 18 IL-ECFPs, 5 of them are contained in DLinDMA, while 7, 8, 

and 11 are contained in selective ionizable lipids MC3, L319, and SM-102. Compared 

to DLinDMA, MC3 contains a secondary ester linker (IL-ECFP 69 and 77). 

Compared to MC3, L319 contains a primary ester linker (IL-ECFP 147) in tails, 

replacing one double bond (IL-ECFP 12), and the chain after the double bond 

comprises six carbon atoms (IL-ECFP 46). SM-102, comparing to MC3, has a 

hydroxy group (IL-ECFP 132) in the head and a primary (IL-ECFP 10) as well as a 
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secondary ester (IL-ECFP 935) in tails. The distance from the nitrogen to the ester is 

five carbons (IL-ECFP 795) in one tail of SM-102. These features distinguish 

ionizable lipids from each other and are deemed essential and ranked in the model.  

 

3.2. Experimental validation of the ML model  

The ML model was validated by the animal test. LNPs of various formations 

(ionizable lipid as MC3 or SM-102, N/P ratio at 3:1 or 6:1) were used to 

intravenously deliver mRNAs encoding human ACE2 to mice. The ACE2 expression 

level was measured as the relative light unit (RLU) of the nanoluciferase enabled by 

the fused HiBit tag. Table 3 shows the characteristics of these LNPs. Four LNPs have 

around 90% encapsulation efficiency and a similar particle size of around 100 nm. Fig. 

6 compares the prediction results and in vivo test. Fig. 6A shows that the MC3-based 

LNP is predicted to induce a higher titer value than that based on SM-102, but the N/P 

ratio does not influence the predicted titer. In the animal results of Fig. 6B, 

MC3-based LNP with N/P ratio at 6:1 resulted in an overall higher RLU than that 

based on SM-102, though there is no significant difference between them (Fig. 6C 

and D). LNPs based on two ionizable lipids with an N/P ratio at 3:1 show similar 

RLU.  

 

3.3. Investigating the molecular structure of mRNA LNPs by MD simulations 

MD modeling was performed to investigate the interaction between lipids and mRNA 

in LNP formation. Fig. 7 shows the initial and final structure of a single mRNA 

sequence for 100 ns MD simulation, which shows that the mRNA sequence is folded in 

the water solution. Fig. 8 displays the final structure of four lipid systems (ionizable 

lipid as SM-102 or MC3, and N/P ratio of 3:1 or 6:1) for 200 ns MD simulation. The 
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four systems self-assemble rapidly and form aggregates in the water solution, but the 

degree of aggregation is different. In the SM102-6:1 system with the ratio of 6:1, all 

molecules aggregate together. However, the other three systems form several clusters 

of different sizes. All LNPs formed show dense core structure. As for mRNA 

encapsulation, the SM102-6:1 system entraps a part of the mRNA sequence. However, 

in the rest of the lipid systems, the whole mRNA sequence is almost exposed to the 

aqueous solution. Besides, long mRNA in system MC3-6:1 attaches to multiple LNPs, 

while mRNA sequences in the other three systems only bind to a single LNP. 

To show how mRNA interacts with LNP, the simulation results were re-colored 

with nitrogen atoms on the ionizable lipid highlighted in Fig. 9. It shows that all lipid 

molecules aggregate together to form the LNPs, and nitrogen groups of cationic lipids 

preferentially locate at the surface of LNP. The mRNA molecule twines around LNP 

by two possible mechanisms. On the one hand, the nucleosides of mRNA are direct to 

or lie on the LNP by the hydrophobic interaction. On the other hand, the phosphate 

groups of the mRNA backbone are close to the nitrogen atoms of LNP due to the 

electrostatic effect.  

Fig. 10 shows the quantitative analysis of four lipid systems during 200 ns MD 

simulation. The RMSD profile indicates that four lipid systems reach a stable state 

after about 50 ns. The surface areas of mRNA exposed to water in the systems 

decrease with time, which indicates the encapsulation of mRNA molecule to LNP. 

The mass-weighted radius of gyration (Rg) vs. time of the whole system represents 

that aggregation of SM102-3:1 and SM102-6:1 is more obvious than those of 

MC3-3:1 and MC3-6:1. The density profile of the SM102-6:1 system shows a 

high-intensity peak at about 100 angstroms. In contrast, more than one peak is 

observed in the other three systems, and the MC3-6:1 system shows a wide 

distribution. These results imply that SM102-6:1 is compact, while MC3-6:1 is 

relatively loose.   
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4. Discussion 

Currently, the selection of the ionizable lipid has attracted significant attention for 

optimizing the LNP formulation for mRNA delivery. Since traditional screening tests 

often consume a lot of time and materials, computational tools that can accelerate the 

development should be valuable. The present work builds an ML model with good 

prediction performance, which correlates the critical substructures of ionizable lipids 

to the in vivo potency (IgG titer) of mRNA vaccines to help the choice of ionizable 

lipids.  

More importantly, the importance of features is ranked. The 18 critical IL-ECFPs 

among 1024 are identified in Fig. 5B, representing the cationic head group, ester 

linker, and tail of ionizable lipids. A small head group, such as IL-ECFP 160, 

combining with two relatively large dilinoleyloxy tails (IL-ECFP 162 and 171) may 

behave in a “cone” shape and facilitate the formation of hexagonal HII phase when 

contacting with endosomal membrane, disrupting the bilayer structure and release the 

RNA therapeutics29. These substructures are the symbols of DLinDMA, which is one 

ionizable lipid that was turned out to be highly effective in the early stage. DLinDMA 

was then optimized to DLin-KC2-DMA29 and further MC328 by substituting with a 

second ester linker (IL-ECFP 69) distant from the nitrogen at three carbons length 

(IL-ECFP 77), which are deemed more important than IL-ECFP 160 and 162. The 

original research also shows an improvement in potency by this optimization. 

However, the adverse effect is also commonly seen when administrated with 

MC3-containing LNP because of its low biodegrability30. Maier et al.51 developed 

biodegradable L319 by substituting one double bond with an ester linker (IL-ECFP 

147 and 12), assuming this compound could be metabolized by hydrolysis and 

β-oxidation. Sabnis et al.25 developed SM-102 from a similar compound to MC3 by 

obtaining the balance between the lipid pKa
28,30, potency, and metabolism behavior. 
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SM-102 has a head group as IL-ECFP 132 and two ester linkers, IL-ECFP 10 and 935. 

The distribution of esters in two tails maintains the pKa within the desired range, the 

side chain resulted from the secondary ester may facilitate the “cone” shape, and the 

distance from the nitrogen to the ester (IL-ECFP 795 in SM-102) also impacts the 

metabolism25. Both L319 and SM-102 also show high in vivo potency. The present AI 

model recognizes these IL-ECFPs above as important substructures, though the 

mechanism is not reflected in the collected data. Besides, notice that the ECFPs 

presented here are just the top 18 important ones, but there are 1024 ECFPs in total. 

The efficiency of ionizable lipid should be more dependent on the sum importance of 

all ECFPs. 

The validation of the ML model against the in vivo test result also proves our 

model with some suggestive ability about ionizable lipid (Fig. 6). We modified the 

mRNA of human ACE2 to encode a secreted protein, and therefore the ACE2 

expression can be directly detected from the blood samples, which is a straightforward 

and undisturbed way to assess the efficiency of LNP carriers. The animal test shows 

that ACE2 expression level induced by LNP at N/P ratio of 6:1 is higher than that at 

the ratio of 3:1, consistent with the previous finding that the higher N/P ratio induces 

more potency26,27,66. The result also shows that the MC3-based LNP induces more 

expression than that based on SM-102 at the N/P ratio of 6:1. A reasonable 

assumption is that expression level is positively correlated to IgG titer, which 

conforms to the prediction by the ML model that MC3 induces higher IgG titer than 

SM-102 at an N/P ratio of 6:1. However, low biodegradability correlates to side 

effects30, making the choice of ionizable lipid complicated. In fact, it is SM-102 that 

is formulated in mRNA-1273 vaccine67. Besides, the model predicts IgG titers for two 

N/P ratios are similar. It is due to that the N/P ratio is little varied for one kind of 

ionizable lipid, and the ML model is difficult to discriminate the impact of the N/P 

ratio from ionizable lipid. Inputting more diverse data can address this issue easily.  
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The structure of LNP is another important topic concerned by the pharmaceutical 

field. The cryo-TEM images have shown that LNPs are overall in dense core26,68 or 

lamellar23,69 structure. However, visualization of LNP structure at a molecular level 

often relies on modeling method70–72. In the present study, we performed an MD 

simulation of LNP entrapping mRNA (Fig. 8). During the simulation, the firstly 

dispersed lipids aggregate to form small dense core particles. The mRNA can twine 

around or be partly entrapped in these lipid particles. Besides, mRNA twining around 

multiple particles is also possible. Analysis of the aggregation behavior (Fig. 10) 

shows that system SM102-6:1 (SM-102-based, N/P ratio 6:1) converges most rapidly 

and forms the most compact structure, while system MC3-6:1 forms a relatively loose 

structure. Interestingly, increasing the lipid content (N/P ratio from 3:1 to 6:1) makes 

the SM-102 system more compressed but loosens the MC3 system. These results 

indicate that both ionizable lipid type and N/P ratio influence the LNP aggregation 

behavior. Our simulated LNP structure agrees with another all-atom modeling result 

by Rissanou et al.70, who have simulated the aggregation behavior of mRNA and 

so-called DML lipid molecules, wherein mRNA also twines around the LNPs. 

The interaction between the phosphate on mRNA and the nitrogen on ionizable 

lipids is of research interest. The electrostatic effect between the two kinds of 

molecules is presumed to promote the mRNA binding to LNP28. Our modeling result 

suggests that during the LNP formation, lipids aggregate first, and mRNA twines 

around LNP with its phosphate groups getting close to nitrogen atoms. This binding is 

also helped by the hydrophobic effect implemented on the nucleosides of mRNA, 

resulting in those nucleosides generally direct to or lie on the LNP. Besides, hydrogen 

bonds70 is reported to be another potential factor facilitating this binding. 

The all-atom dynamic simulation provides rich insights into the LNP formation 

mechanism. However, limited to computational capacity, this method can only handle 

small simulated systems. Considering scaling up the system based on the mechanism 

of particle formation deduces theoretical structures of LNP as Fig. 11. At the first 
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stage of mixing, lipids in the vicinity should aggregate to form small clusters and 

attach to mRNA in the line. This step is supported by the MD modeling (Fig. 8D and 

Ref.70). The lipid clusters tend to fuse by their nature to reduce the surface energy, but 

the cluster volume cannot grow unlimitedly since the main stuff, the ionizable lipid, is 

amphipathic. Thus, the cluster either grow along the mRNA (Fig. 11C) or enlarge like 

a liposome particle (Fig. 11D), and this deduces two theoretical LNP structure (Fig. 

11E and F), respectively. The tunnel-organization of the LNP core proposed in Fig. 

11E is supported by the transmission electron microscopy (TEM) image73, which 

shows the LNP core texture as many arranged channels. These channels correspond to 

hexagonal phase rods, as reported. The liposome-like volume proposed in Fig. 11F is 

also recorded by TEM and is called “blebs”. The occurrence of this structure seems to 

depend on PEG content73, DSPC content, and the type of nucleic acids entrapped22. It 

seems that long nucleic acids, such as DNA and mRNA, are likely to induce the blebs. 

It is reasonable since longer nucleic acids form a larger obstacle in the system, which 

may induce clusters fusing less randomly in the space and result in a heterogeneous 

particle. As for the other three lipids in LNP, PEG-lipid, and DSPC, mainly located at 

the exterior, while the cholesterol helping to constitute the core, are also 

evidenced73,74. 

In this study, the ML model was built to predict the formulation of mRNA 

vaccines, and the MD method was used to investigate the LNP formation. The 

application domain is a critical issue for an ML model. Our model was trained on data 

from ionizable lipids across a long history. These lipids contain important 

substructures such as the tertiary amine, hydroxy group, ester bond, secondary ester 

bond, and dienyloxy chain, which have been represented as ECFPs and can be 

combined to build other new and typical lipids. Thus, the coverage of ionizable lipids 

of our model is extended, benefiting the formulation selection, which is the primary 

target of our study. On the other hand, though we have collected data as much as 

possible, the resulted data size is still relatively small, and the searched antigens cover 

just several diseases, which narrows the range that uses this model to predict IgG titer 
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for specific diseases. Besides, small data size impedes the further analysis about the 

dependence of LNP formulation on specific diseases. More data of diverse diseases 

and formulations are desired in the future to expand its application domain and refine 

the design of LNP for specific diseases. As for MD simulation, the current simulated 

systems are relatively small in scale. To our best knowledge, modeling on LNP at a 

typical size with good stability (60 nm)24 has not been published. Thus, the real internal 

structure of an LNP can only be deduced. The recently reported ML-based MD 

modeling method has dramatically increased the scale of simulated systems75, which 

may become a powerful tool in LNP modeling in the future. Last, the current study has 

not revealed the relationship between MD results and LNPs’ pharmacological effect. 

More MD modeling associated with data science technology is promising to deal with 

this issue.  

 

5. Conclusions 

The first ML model has been successfully developed to predict the LNP formulations 

with the IgG titer of the mRNA vaccine, which is validated by in vivo test on the 

ACE2 expression. The ML model also recognizes important substructures of 

ionizable lipids. The MD model is used to investigate the aggregation behavior and 

the molecular structure of LNP. The integrated computational methodology is able to 

design better ionizable lipid, which serves a constructive role in the formulation 

development of nucleic acids therapeutics. 
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Figure 1 Data collecting and cleaning process for machine learning (ML) work. (A) 

Data collecting and cleaning process. (B) The eventual dataset contained lipid 

nanoparticle (LNP) with seven kinds of ionizable lipids, including DLin-MC3-DMA 

(MC3), DLinDMA, L31951, Lipid M, N, and Q30, and SM-10247,52. 

Figure 2 Three-dimensional structure of the MC3, SM-102, DSPC, cholesterol, and 

PEG2000-DMG. 

Figure 3 Data distribution of 325 formulation datasets. Numerical counts of the 

eventual data dependent on disease and protein (A), subject type (B), population or 

strain (C), injection route (D), ionizable lipid type (E). In (A), H1N1 Cal and PR8 

referred to strains A/California/07/200945 and A/Puerto Rico/8/193446, respectively; 

SARS-CoV-2 S-2P and RBD referred to the S protein with two substitutions of 

proline at 986 and 987 amino acid positions47 and receptor binding domain (RBD)48, 

respectively; and RSV mDS-Cav-1 referred to the full-length F protein respiratory 

syncytial virus (RSV) with four-point mutations49,50. 

Figure 4 Data distribution of 325 formulation datasets. Numerical counts of the 

eventual data dependent on N/P ratio (A), log10(dose) (B), the second vaccination time 

(C), IgG titer test time (D), and log10(IgG titer) results (E) were given. 

Figure 5 Features ranking and important substructure of ionizable lipids. (A) The top 

25 important features related to the formulation. Importance times were recognized 

using the information gain (IG) values as a criterion from the lightGBM model. (B) 

The top 18 important IL-ECFP and their corresponding specific substructure of 

ionizable lipid. The center atom, recognizing length, and environmental information 

of each ECFP are indicated by the stressed blue area, black bonds, and grey bonds, 

respectively. 

Figure 6 Comparison between ML prediction and in vivo expression level. (A) 

Predicted log10(IgG titer) versus time profile of BALB/c mice induced by 

mRNA-LNP encoding S-2P protein of SARS-CoV2 at the dose of 20 μg by i.m. 

administration on Days 0 and 21. LNP consists of ionizable lipid, DSPC, cholesterol, 

and PEG-lipid at a molar ratio of 50:10:38.5:1.5. Ionizable lipids included MC3 and 
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SM-102. The N/P ratio is 6:1 or 3:1. (B) Relative light unit (RLU) of HiBit tag versus 

time profiles in C57BL/6JGPt mice induced by mRNA-LNP encoding 

angiotensin-converting enzyme 2 (ACE2) following i.v. administration. The LNP 

formulations were the same as the prediction task. The difference in the maximum RLU 

at 8 h (C) and the AUC at 168 h (D) after administration were tested. Data are presented 

as mean ± SD (n = 4). **P ≤ 0.005. ns, not significant. 

Figure 7 The snapshots of mRNA structure at the initial time (A) and 100 ns of 

simulation (B). 

Figure 8 The snapshots of four lipid systems for 200 ns MD simulation: (A) 

SM102-3:1; (B) SM102-6:1; (C) MC3-3:1; (D) MC3-6:1; water molecules were not 

displayed in the figure. Red represents mRNA; purple represents SM-102 ionizable 

lipid; blue represents MC3 ionizable lipid; yellow represents cholesterol; cyan 

represents DSPC; green represents PEG2000-DMG. 

Figure 9 The snapshots of four lipid systems for 200 ns MD simulation: (A) 

SM102-3:1; (B) SM102-6:1; (C) MC3-3:1; (D) MC3-6:1; water molecules were not 

displayed in the figure. Yellow: mRNA sequence. Blue: nitrogen on the ionizable 

lipids. 

Figure 10 Quantitative analysis of four lipid systems during 100 ns MD simulation. (A) 

Root mean square displacement (RMSD) vs. time. (B) Solvent accessible surface area 

of the mRNA sequence vs. time. (C) Mass-weighted radius of gyration (Rg) vs. time. (D) 

Density profile of a system as a function of the distance from the geometric center of 

the system. 

Figure 11 The evolution of lipids fusion and theoretical structure of mRNA LNP 

system. (A) At the initial mixing stage, lipids form many small clusters and attach 

along the mRNA sequence by electrostatic effect. (B) The clusters getting close tend 

to fuse into a bigger cluster to decrease the surface energy. The tails of lipid in these 

clusters are reduced for clarity. Then, more clusters participate in the fusion to form a 

long lipid particle (C) or liposome-like particle (D). If the fusion primarily results in 

long lipid particles, they should form tube structures in the core of LNP (E). 

Otherwise, lipid fusion leading to liposome-like particles produces LNP containing a 
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large chamber filled with aqueous phase (F). The DSPC and PEG should locate at the 

exterior of LNP while cholesterols insert in the interval between lipids. 
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Table 1 Molecules’ number of the five simulated LNP systems. 

Parameter mRNA MC3-3:1 MC3-6:1 SM102-3:1 SM102-6:1 

N/P ratioa NA 3:1 6:1 3:1 6:1 

mRNAb 1 1 1 1 1 

MC3 0 96 192 0 0 

SM-102 0 0 0 96 192 

Cholesterol 0 74 148 74 148 

DSPC 0 19 38 19 38 

PEG2000-DMG 0 3 6 3 6 

Na+ 31 0 0 0 0 

Cl‒ 0 65 162 65 161 

Water 6190 69747 98183 68936 97877 

aThe number ratio between the nitrogen groups of ionizable lipids to phosphate 

groups of mRNA sequence. 

bThe mRNA consists of 32-mer of poly (A).  

 

Table 2 Model performance of LightGBM. 

Parameter Training set Validation set 10-fold cross-validation 

(mean±SD) 

Mean absolute error  0.220 0.278 0.303 ± 0.053 

Mean squared error  0.092 0.139 0.178 ± 0.078 

Root mean squared error  0.303 0.373 0.412 ± 0.086 

R2  0.935 0.904 0.871 ± 0.061 

 

Table 3 Encapsulation efficiency and particle size of LNPs. 

Formulation* MC3-3:1 MC3-6:1 SM102-3:1 SM102-6:1 

Encapsulation 

efficiency  

89.5% 91.3% 89.6% 91.2% 

Particle size (nm) 97.8 101.0 101.2 106.3 

*LNP was formulated from ionizable lipid, DSPC, cholesterol, and PEG-lipid at a 

molar ratio of 50:10:38.5:1.5. The N/P ratio was 6:1 or 3:1. 
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