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Abstract

This work explored 3D bioplotting to mimic the intrinsic hierarchical structure of natural articular 

cartilage. Alginate dialdehyde-gelatine (ADA-GEL) was used as a hydrogel ink to create 

hierarchically ordered scaffolds. In comparison to previously reported ADA-GEL compositions, 

we introduce a modified formulation featuring increased amounts of thermally modified 

gelatine. Gelatine was degraded by hydrolysis which resulted in tailorable printability 

characteristics further substantiated by rheological analysis. ADA(3.75%w/v)-GEL(7.5%w/v) 

with gelatine modified at 80 °C for 3 h could be printed in hierarchical complex structures 

reaching scaffold heights of over 1 cm. The hierarchical structure of the scaffolds was 

confirmed via µ-CT analysis. To examine mechanical properties as well as the suitability of the 

hydrogel as a proper matrix for cell seeding and encapsulation, nanoindentation was 

performed. Elastic moduli in the range of ~ 5 kPa were measured. Gelatine heat pre-treatment 

resulted in modifiable mechanical and rheological characteristics of ADA-GEL. In summary, 

this study demonstrates the possibility to enhance the printability of ADA-GEL hydrogels to 

fabricate hierarchical scaffold structures with shape stability and fidelity, without the necessity 

to change the initial hydrogel chemistry by the use of additives or crosslinkers, providing a 

valuable approach for fabrication of designed scaffolds for cartilage tissue engineering.



1. Introduction
Osteoarthritis is the most common joint disease of the adult human being. Mostly caused by 

inherent form- and function disorders, illnesses or accidents almost every 10th adult human in 

Germany suffers from osteoarthritis [1]. In particular, women and men aged between 50 to 70+ 

years are affected. Within the course of the disease, the guiding symptoms are severe pain 

and the loss of function of joint units like knee-, hip- or shoulder joints due to the degeneration 

of hyaline cartilage tissue. Hyaline cartilage is the highly specialized connective tissue of 

diarthrodial joints. Its principal function is to provide a smooth, lubricated surface for articulation 

and to facilitate the transmission of loads with a low frictional coefficient [2]. Up to date 

osteoarthritis is not curable. Consequently, the goal of osteoarthritis therapy is focused on pain 

reduction and on long-term preservation of the hyaline cartilage tissue to secure its functionality 

[3]. If conservative therapies like physiotherapy and medical treatments cannot grant a normal 

daily routine for the patient, surgery is required. State of the art are autologous osteochondral 

transplants (AOT) as well as matrix-linked autologous chondrocyte transplants (MACT) to 

restore cartilage tissue. For both types of surgery cartilage tissue is taken out of a healthy host 

tissue environment. In the case of AOTs, healthy cartilage-bone fragments are placed upon 

the damaged area. However, the newly formed tissue by the AOT approach is mainly 

fibrocartilage, which is not useful for a long-term cure [4,5]. In the case of MACTs, on the other 

hand, chondrocytes get isolated from the sample, increased in numbers, linked to a matrix and 

are implanted in damaged cartilage parts. Thanks to this technique, hyaline-like tissue can be 

formed with similar characteristics as native cartilage tissue [1]. The use of three-dimensional 

(3D) scaffolds in combination with chondrocytes, however, could rapidly accelerate the healing 

process thanks to the manifold applications of scaffolds as space-filling agents, as delivery 

vehicles for bioactive molecules and as three-dimensional structures that organize cells and 

feature stimuli for an even better-directed formation of the desired tissues [6]. To manufacture 

3D scaffolds, biofabrication techniques attract increasing interest worldwide [7]. Especially in 

the fields of regenerative medicine and tissue engineering, biofabrication has great potential 

thanks to the numerous opportunities that are offered by additive manufacturing technologies 

such as 3D-bioplotting. Using such technologies enables scientists to manufacture complex 

tissue constructs consisting of the plotted material as well as encapsulated cells which leads 

to better biomimetic approaches to replicate native tissue [8]. However, as biofabrication 

represents an advanced tissue engineering approach, the current state-of-the-art therapy in 

the clinic involves still the seeding of cells on pre-fabricated scaffolds. Hence, the development 

of suitable materials for hierarchical bioprinting to manufacture advanced scaffold matrices for 

MACT is a current major challenge that must be overcome. For this application, hydrogels are 

promising materials because they can mimic the microenvironment of natural tissues and 

therefore can promote cell attachment, growth, and proliferation [9]. In this context, specifically 



naturally-derived hydrogels provide important characteristics like biocompatibility and 

promising cell-material interactions that path the way for developing a native ECM 

(extracellular matrix) analogue structure [6]. Synthetic approaches, in contrast, may often lack 

integrin-binding ligands which hinder cell attachment and proliferation [10]. Since the ECM is 

mostly composed of polysaccharides, glycosaminoglycans, and various proteins, ADA-GEL 

(alginate dialdehyde–gelatine) with a polysaccharide as well as the collagen derived 

component gelatine (Fig. 1) provides a promising matrix for biomimetic tissue engineering 

applications [11]. The potential of ADA-GEL for bioprinting approaches has been demonstrated 

[12–14]. However, mechanical demands in physiological conditions remain challenging for 

hydrogels with thermoresponsive characteristics. Therefore, the mechanical properties of 

ADA-GEL systems need to be tailored for the specific application. Due to physico-chemical 

modifications of the structure, crosslinking, and the use of additives it is possible to obtain 

hydrogels with modifiable viscous, rheological, and mechanical properties [11,15]. Potential 

additives include micro-and nanofibers as well as micro-and nanoparticles. Nanocellulose in 

particular is being investigated as a promising additive, as not only mechanical properties could 

be improved with it, but also cell proliferation, bioadhesion, and viability [16,17]. In a dual-

crosslinking approach, we have shown that the mechanical properties [18] and crosslinking of 

ADA-GEL can be tailored by crosslinking the alginate-based component using CaCl2 and the 

gelatine component enzymatically with microbial transglutaminase [19]. This work aimed to 

investigate the possibility of recreating the intrinsic hierarchical structure of articular cartilage 

found in-vivo by a bioplotting approach in-vitro. Due to its promising characteristics regarding 

biocompatibility, biodegradability, and cell-material interactions, ADA-GEL is used as a 

hydrogel-ink [20]. Hydrogel precursor modification via temperature pre-treatment of gelatine 

was examined regarding its effect towards modifiable mechanical and rheological 

characteristics of the ADA-GEL ink (Fig. 1). Various compositions of ADA-GEL were tested 

regarding optimised printability characteristics. Subsequently, the modified ADA-GEL 

hydrogels were compared to prior investigated ADA-GEL compositions which had been 

successfully developed for bio-fabrication as well as scaffold fabrication [11] using printability 

assessments, nanoindentation, and rheological characterization. To investigate the impact of 

the thermal pre-treatment of gelatine on a molecular level Fourier-transform infrared 

spectroscopy (FTIR) as well as Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-Page) were conducted. 



Figure 1: Schematic illustrating the preparation of ADA-GEL.

2. Materials and Methods

2.1 Materials

2.1.1 Material Synthesis (Oxidation of Alginate)

Covalently crosslinked ADA-GEL hydrogel was synthesised as described by Sarker et al [20]. 

Briefly, ADA (alginate-di-aldehyde) was prepared by the oxidation of alginate (VIVAPHARM® 

alginate, PH176, from brown algae, pharmaceutical excipient grade, JRS PHARMA GmbH & 

Co. KG, Germany) using sodium (meta)periodate (NaIO4, Sigma-Aldrich, Germany) as an 

oxidising agent in an ethanol-ultrapure water mixture (1:1). The suspension was stirred for 6 h 

at 22 °C (room temperature, RT) under the complete absence of light. The oxidation reaction 

was quenched by adding ethylene-glycol (VWR Chemicals International) and stirred for 

additional 30 minutes. The resultant suspension was transferred into several dialysis molecular 

porous membrane tubes (MWCO: 6-8 kDa, Spectrum Laboratories, USA) and dialysed against 

ultrapure water (UPW, Milli-Q®, Merck Millipore, Germany). UPW was changed twice a day 

during five days of dialysis. After dialysis, the ADA product was frozen for at least 48 hours 

before it was transferred into the freeze dryer (ALPHA 1-2 LDplus, CHRIST 

Gefriertrocknungsanlagen, Germany) for lyophilisation.



2.1.2 Biomaterial Ink Formulation

To produce ADA-GEL hydrogel-inks, ADA and gelatine (Type A, derived from porcine skin, gel 

strength 300, Sigma-Aldrich, Germany) solutions were mixed. For the preparation of 15 

wt/vol% gelatine stock solutions, the gelatine was dissolved in UPW at 37, 70, 80 and 95 °C 

respectively while vigorously stirring for 10 min, 3h or 6 h. All preparations are depicted in 

Table 1. The warm gelatine solutions were filtered (Carl Roth GmbH&Co. KG, Germany, pore 

size 0.45 µm) and stored at 4 °C in aliquots for later use. ADA solutions of 7.5 wt/vol% were 

freshly prepared at the day of their use by stirring in phosphate buffer saline (DPBS) without 

Ca2+- and Mg2+-content (Gibco® by life technologiesTM, USA) at RT followed by subsequent 

filtration (Carl Roth GmbH&Co. KG, Germany, pore size 0.45 µm). For the preparation of the 

hydrogel-ink, aqueous gelatine solution was slowly added into an ADA solution with a ratio of 

1:1 and covalently crosslinked under continuous stirring for 10 min at 37° C. The hydrogels 

were subsequently ionically crosslinked using 0.1 M CaCl2 and 0.5 M CaCl2 solutions (calcium 

chloride dihydrate, VWR Chemicals, Germany)

Table 1: Overview of ADA-GEL precursor contents in a not heat-pretreated reference composition (37 °C) in 

comparison to new formulations.

ADA-GEL formulation ADA [%w/v] Gelatine [%w/v] Pre-treatment 
Temperatures [°C]

Holding 
Time

ADA-GEL-TRef 3.75 3.75 37 10 min

ADA-GEL-T70°C_6h 3.75 7.5 70 6 h

ADA-GEL-T80°C_3h 3.75 7.5 80 3 h

ADA-GEL-T80°C_6h 3.75 7.5 80 6 h

ADA-GEL-T95°C_3h 3.75 7.5 95 3 h

2.2 Material Characterisation

2.2.1 Fourier Transfer Infrared Spectroscopy (FTIR)

An attenuated total reflectance FTIR (ATR-FTIR) spectrophotometer (IRAffinity-1S, Shimadzu, 

Japan) was used to evaluate the impact of the temperature pre-treatment of gelatine and the 

crosslinking between ADA and gelatine on the chemical structure. Dried films were used to 

record ATR-FTIR spectra. Films of gelatine and ADA-GEL were created by casting the 

corresponding hydrogels into 1.5 ml microtubes (Sarstedt, Germany) and dried for 3 days at 

RT.



2.2.2 Electrophoretic Analysis

SDS-PAGE was performed to evaluate the impact of thermal pre-treatment on the molecular 

weight distribution of gelatine. Separating and collecting gels were prepared one day before 

the experiment. The separating gel was prepared and poured into the sample holder (5 ml) 

before the polymerization of the solution. It was then polymerized for 1 h. Afterwards, the 

collecting gel was prepared and added into the sample holder (approx. 1.8 ml) with a further 

45 min polymerization step. Gelatine samples were diluted to a protein concentration of 2.3 

mg/ml. 15 µl of the sample solution was added to 5 µl loading buffer and mixed extensively. 

10 µl blank solution (UPW + buffer) served as. The molecular marker solution (PageRulerTM, 

Thermo Fisher Scientific, US) consisting of 10 defined proteins, was used to estimate the 

approximate size of the separated protein fragments. 10 µl of the marker and 20 µl of each 

sample were loaded on their respective lane on the gel. Starting current of 80 V was applied 

until the samples entered the separating gel in a WAVETETRAD-PP500-system (Cleaver-

Scientific, Great Britain). The voltage was then increased to 120 V. The visualisation of the 

protein bands was performed by using Brilliant Blue R250 staining solution (Thermo Fisher 

Scientific, US). SDS-PAGE quantification was conducted via Fiji image-J.

2.2.3 Rheological Characterization

Rheological properties of hydrogel-ink formulations were measured using a controlled stress 

rheometer (DHR-3, TA Instruments, USA) with a 40 mm diameter, cross-hatched geometry to 

reduce slip of the hydrogel samples. ADA-GEL biomaterial ink- samples were heated up to 37 

°C and pipetted onto a temperature-controlled peltier plate held at 25 °C to achieve a 

homogenous gel distribution. The samples were surrounded by a solvent trap, to avoid 

dehydration of the hydrogels. Time sweeps were conducted with an angular frequency of 10 

rad/s and an oscillatory stress of 0.1 Pa. Amplitude sweeps, frequency sweeps, and recovery 

sweeps were performed after 20 min of gelation time of the ADA-GEL samples at 25 °C. For 

amplitude sweeps the angular frequency was set to 10 rad/s. Frequency sweeps were 

conducted applying an oscillatory stress of 0.1 Pa. Recovery sweeps were carried out with an 

erratic shear rate increase from 0.01 s-1 to 500 s-1 after 100 s. The shear rate was decreased 

to 0.01 s-1 after further 100 s to assess the recovery behaviour of the hydrogels. Temperature 

sweeps were conducted in a temperature range from 20 to 40 °C applying an angular 

frequency of 10 rad/s and an oscillatory stress of 0.1 Pa. 

2.2.4 Nanoindentation

Mechanical testing was performed to determine the effective Young’s moduli (Eeff) of the 

hydrogels using a Piuma Nanoindenter (Optics11, Netherlands) equipped with a boro-silicate 



glass indenter tip featuring 23 µm radius and 0.47 N/m stiffness (Optics11, Netherlands). 

Hydrogels were measured in triplicates. Three indentations with 200 µm spacing were 

performed per hydrogel sample. The median of three indents was taken for every point. Tests 

were run at RT as well as at 37 °C. ADA-GEL films were deposited in plastic petri dishes and 

then crosslinked with 0.1 M CaCl2 and 0.5 M CaCl2 for 10 min each. The samples were then 

rinsed with HBSS (Hank’s Balanced Salt Solution, Sigma-Aldrich, Germany), which was 

subsequently also used as an optical medium during nanoindentation.

2.3 Printability Assessment

Scaffold designs were drafted using the scaffold fabrication software “ScaffoldGenerator” 

(GeSim GmbH, Germany) as well as G-code and 3D-CAD/CAM-Software Fusion 360 

(Autodesk, US). To assess the printability of the hydrogel-inks, single-strand structures and 

two-dimensional grids were printed using a micro-nozzle with an inner diameter of 410 μm 

(Nordson Corporation, US). The printing speed was set to 2 mm/s. Air pressures were adapted 

to the different hydrogel-ink formulations (Table 1) to provide a continuous material flow. 

Single-strand structures, square two-dimensional grids, and square 3D scaffolds had an edge 

length of 15 mm. Five struts were plotted over the edge length. The number of layers in z-

direction was adapted to the different hydrogel-ink formulations to assess the maximum 

printable height. Scaffold geometry and structure were analyzed using macroscopic and light 

microscopy images (Stemi 508, Carl Zeiss Microscopy GmbH, Germany). Image analysis was 

performed using ImageJ to assess strand thickness, evaluated for n = 10 individual strands, 

and printing accuracy. The printed areas of square 2D grids with a determined edge length of 

15 mm (Ai [mm2]) were compared to the designed grid area (A = 225 mm2) to calculate the 

percentage printing accuracy for each sample using the following equation:

𝑃𝑟𝑖𝑛𝑡𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) = [1 ―
|𝐴𝑖 ― 𝐴|

𝐴 ] × 100 (1)

G-code was written to design a two-dimensional structure to evaluate the possible resolutions 

of the hydrogel-ink formulations. The distances between strands were varied from 2 mm up to 

0.5 mm (Fig. 6 A) in a square structure to assess at which distance strut merging could occur. 

A uniformity factor was determined to classify printed strand uniformities and compare them to 

a theoretically perfect uniform strand [13,21]. For each hydrogel ink, one layer was printed with 

optimised extrusion pressure and a velocity of 2 mm/s. Each layer was imaged using light 

microscopy and images were evaluated using ImageJ. The outer edges of three printed 

strands per hydrogel-ink were outlined and measured. The length was then divided by the 

length of a theoretical, perfectly uniform strand (straight lines next to the strands) to obtain the 

uniformity factor U (Eq. 2): 



    𝑈 =  
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑟𝑖𝑛𝑡𝑒𝑑 𝑠𝑡𝑟𝑎𝑛𝑑

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑠𝑡𝑟𝑎𝑛𝑑 (2)

Figure 7 H shows a nonuniform (U > 1) and a uniform strand (U = 1) [13]. The pore factor (Pr) 

was determined to compare printed pores with ideal square pores. 

Pr =  
(𝑝𝑜𝑟𝑒 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2

16 𝑥 (𝑝𝑜𝑟𝑒 𝑎𝑟𝑒𝑎)
(3)

2D-printed hydrogel grids were imaged using a light microscope and evaluated using ImageJ. 

Three pores were measured (perimeter and pore area) for each hydrogel composition (Table 

1) and the pore factor was determined (Eq. 3). A pore factor Pr<1 corresponds to an under-

gelled, Pr=1 corresponds to a properly-gelled, and Pr>1 corresponds to an over-gelled material 

[13].

2.4 Micro Computed Tomography (µ-CT) analysis

X-ray computed tomography (CT) measurements were performed using the 

“CTportable160.90” device developed by the Development Center X-Ray Technology (EZRT) 

of the Fraunhofer Institute (Fürth, Germany). The system was operated at 60 kV and 120 µA 

and a nominal spatial voxel sampling of 24.23 µm to cover the whole sample diameter during 

the scan (Focus object distance of 93 mm, focus detector distance of 190 mm). A total of 800 

projections within one 360° rotation in a FlyBy acquisition were taken with an exposure time of 

200 ms. The FlyBy acquisition procedure rotates the object constantly during the image 

exposure and resulted in measurement times of 2,6 min. The software used for data acquisition 

was Volex 10 (Fraunhofer EZRT, Germany). All images were 3D reconstructed with a filtered 

back-projection algorithm (Fraunhofer EZRT, Germany, REL-2.1.1) and afterwards analysed 

with the BlobAnalysis algorithm from Fraunhofer EZRT. The BlobAnalysis algorithm utilizes an 

image segmentation chain on multiple watersheds and morphological operations and 

calculates the number of voxels in the pore, the centre of mass of the pore in x,y,z coordinates, 

the aspect ratio, and the normalized pore diameter for each detected pore.

2.5 Statistical Analysis

Data are expressed as mean ± standard deviation (SD). Statistical analysis was performed 

using Origin2016G software (OriginLab Corporation, USA). All experiments were performed 

using a minimum of n = 3 replicates. Normality tests and analysis of variance homogeneity 

were performed using the Shapiro-Wilk test. Statistically significant differences between 



means were determined at a value of p < 0.05, as determined by the Bonferroni post-hoc test 

using one-way analysis of variances (ANOVA) testing. Different significance levels (p-values) 

are indicated with asterisks and the specific p-value is provided in each figure legend.

3. Results & Discussion

3.1 Denaturation of Gelatine via Heat Treatment

Temperature pre-treated gelatine was examined via FTIR to gather structural information and 

data about intra- and intermolecular dependencies (Fig. 2). The FTIR spectra of pre-treated 

gelatines showed characteristic absorption bands of polypeptides and proteins including amide 

I (∼ 1635 cm-1), amide II (∼ 1527 cm-1) and amide III bands (∼ 1238 cm-1), caused by amide 

bonds linking amino acids. Amide I bands are induced by C=O stretching whereas amide II is 

caused by bending vibrations of N–H groups and stretching vibrations of C–N groups. Amide 

III is related to the vibrations in the plane of C–N and N–H groups of bound amide [22–24]. 

Figure 2: FTIR analysis of heat pre-treated gelatine and corresponding ADA-GELs. A: FTIR spectra of heat-treated 

gelatine (Type A, bloom 300) treated for 3 h and 6 h at 70, 80, and 95 °C. The gelatine reference was dissolved at 

37 °C. B: FTIR spectra of ADA-GEL composed of oxidized alginate and pre-treated gelatines.

All samples modified by the heating pre-treatment showed no changes in wavenumbers for 

amide I, amide II and amide III peak positions indicating an intact primary protein structure of 

gelatine. In contrast to the gelatine spectra, ADA-GEL spectra featured extra peaks which are 

residues of the alginate at 1027 cm-1 due to C-O-C stretching and at 1408 cm-1 due to 

asymmetric COO- stretching [25]. Amide I (1625 cm-1) and II (1538 cm-1)  bands shifted and 

broadened indicating the additional formation of C=N bonds absorbing at 1538 cm-1 which is a 

sign of Schiff’s base formation and therefore covalent crosslinking of ADA and gelatine [26]. 

However, amide III bands could hardly be seen most likely due to overlapping signals of 

gelatine and ADA. Yet, the pre-treatment of gelatine precursor solutions showed no changes 

in the wavenumbers of the ADA-GEL spectra indicating the unaltered structure of amide I and 

II motifs contributing to the Schiff’s base formation with the aldehyde groups of ADA. Unaltered 



amide I and II motifs were also obtained by FTIR analysis by Hoque et al. examining the 

thermal treatment of cuttlefish skin gelatine [27]. In conclusion, from the FTIR study, it was 

hypothesized that a temperature increase firstly manipulates the tertiary and secondary protein 

structure leading to an irreversible denaturation upon further heating [28]. Intramolecular 

hydrogen bonds are broken by the heat treatment and substituted with hydrogen bonds to 

water molecules which prohibit the reformation of the native tertiary protein conformation [28]. 

Nonetheless, FTIR results indicate an intact primary structure of gelatine independent of the 

dissolution temperature, allowing the formation of covalent crosslinks between oxidized 

alginate and gelatine via Schiff’s base formation, as described before [29]. The electrophoresis 

patterns of heat pre-treated gelatines (protein concentration of 2.3 mg/ml) are shown in Fig. 3 

A. Gelatine dissolved at 37 °C served as control. The molecular weight distribution fitted the 

manufacturers’ specification of approximately 100 kDa [30].

Figure 3: SDS-PAGE of temperature pre-treated gelatines. A: Protein pattern. Each lane represents a different 

temperature pre-treatment of gelatine (reducing temperature from left to right). B: Corresponding intensity spectra 

of temperature pre-treated gelatines derived from the protein pattern. C: Area intensity integration of the marked 

high molecular weight (HMW) region. Data are shown as mean ± SD. *p < 0.05. Statistical differences of means 

were analysed using one-way ANOVA.

The most abundant protein molecular weights were found to be at 135, 117 and 64 kDa. Heat-

treated gelatine solutions were degraded which could be seen in washed-out protein bands in 

a range of 40 – 180 kDa. Furthermore, additional protein bands appeared in lower molecular 

weight regions (< 40 kDa). This effect intensified with increasing dissolution temperatures of 

gelatine with the most severe effect at a pre-treatment at 95 °C for 3 h. These observations 

could be confirmed via a comparison of the intensity spectra of each protein band (Fig. 3 B). 

Intensities in high molecular weight regions (> 55 kDa) decreased with increasing pre-

treatment temperatures and holding times. This indicated a decrease in large molecular weight 

molecules and therefore a degradation of gelatine. Due to the absence of enzymes, the main 

factor for degradation was identified as hydrolysis due to the temperature treatment during the 

preparation of the gelatine solutions. Similar results were achieved by Hoque et al [27]. 

Cuttlefish skin gelatine was heat-treated for 30 min at 40, 50, 60, 70, 80, and 90 °C. It was 



observed that gelatine degradation occurred using heat treatments higher than 70 °C [27]. In 

addition to incubation time and temperature, Van den Bosch et al. proved that gelatine 

concentration and solvent (type and concentration of salt ions and pH) have an additional 

impact on gelatine degradation [31]. In this work, gelatines with concentrations of 15 %(w/v) 

were used for temperature pre-treatment in the absence of additional ions. In summary, SDS–

PAGE revealed that gelatine was susceptible to degradation due to the pre-treatment at 

elevated temperatures. Hence, it could be assumed that a pre-treatment of gelatine would 

allow a possible tunability of material characteristics.

3.2 Rheological Assessment

Rheological measurements were performed to determine the time-dependent viscosity, yield 

stress, shear rate-dependent viscosity, temperature-dependent viscosity, and the recovery 

behaviour of the chosen hydrogels (Fig 4). ADA-GEL hydrogel precursors were formed via 

mixing at 37 °C. Since all bioprinting procedures were performed at RT, a gelation process of 

the gelatine occurred due to the cooling-off. Hence, a time-sweep was carried out to evaluate 

after which time a hydrogel-ink could be considered printable. The complex viscosities of the 

ADA-GEL increased over time reaching a plateau region eventually (Fig.4 A). This could be 

attributed to the gelling of ADA-GELs during cooling. Initially, isolated colloidal aggregates, 

which were present in the suspension, crosslinked to form a 3D, highly-viscous network [32]. 

Thus, the progress of complex viscosity over time depended on polymer concentration and 

degree of polymer denaturation (Fig. 4 A). Similar results were found by Ouyang et al [33]. It 

was shown that an increased gelatine concentration increased the viscosity of an alginate 

gelatine blend (x % gelatine + 1 % alginate). Consequently, the degree of thermally modified 

gelatine led to an altered molecular distribution, as confirmed via SDS-PAGE. This was due to 

physical entanglements in the polymer solution. Despite no actual crosslinking in the solution, 

those entanglements and overlapping polymer chains interacted as a viscous network. The 

results indicate that at higher concentrations, the probability of chain interactions 

(entanglements and rearrangements) was higher than in less concentrated solutions, which 

led to an increase of viscosity [34]. Consequently, ADA-GEL-T80°C_6h and ADA-GEL-T95°C_3h 

featured lower viscosities over time compared to the ADA-GEL-TRef despite higher gelatine 

concentrations but due to higher degrees of thermal denaturation (Fig. 3). ADA-GEL-T80°C_3h 

presented the highest viscosities over time due to a high gelatine concentration in comparison 

to the ADA-GEL-TRef and low thermal denaturation in comparison to the other ADA-GELs with 

a higher content of thermally-modified gelatine. Since cell viabilities of possibly encapsulated 

cells for potential further applications were kept in mind, a gelation time of 20 min at RT was 

chosen for further rheological experiments. This was done to account for viscosities that would 

allow proper printing (Fig. 4 A) and to minimize the time at which cells would be exposed to a 



potentially harmful and not ideal temperature (22 °C). Considering the time-sweep, the 

especially well-fitting hydrogel formulations meeting this demand could be determined via a 

visualisation approach. Fig. 4 F depicts a bottle flip test to assess gelation of the hydrogels at 

reduced temperatures (RT). ADA-GEL-T70°C_6h and ADA-GEL-T80°C_3h could exclusively defy 

gravity, firstly after 20 min in comparison to other compositions. The result proved that after a 

certain time point of the ADA-GEL gelation process additional yield stress would be required 

to trigger material flow. However, after 20 min, gelling continued what resulted in higher 

viscosities for the ADA-GELs (Fig. 4 F). Hence, the results indicated that printing pressures 

had to be adjusted during continuous printing.

Figure 4: Rheological assessment. A: Time-dependent change of complex viscosities for the selected ADA-GEL 

samples. Tests were performed with an angular frequency of 10 rad/s and an oscillation stress of 0.1 Pa over a 

time of 45 min at 25 °C. B: Frequency-dependent change of complex viscosity illustrating the shear-thinning 



behaviour of the ADA-GELs. Tests were performed with oscillatory stress of 0.1 Pa after 20 min of gelling time at 

25 °C. C: Shear rate triggered recovery behaviour of ADA-GEL viscosities. The experiments were performed after 

a gelling time of 20 min at 25 °C. D: Temperature-dependent change of complex viscosity illustrating the gelation 

behaviour of ADA-GELs at lower temperatures. Tests were performed with an angular frequency of 10 rad/s and 

oscillatory stress of 0.1 Pa. E: Stress-dependent change of complex viscosity revealing the starting point of material 

flow, known as the yield stress. Tests were performed with an angular frequency of 10 rad/s after 20 min of gelling 

time at 25 °C. F: Visualized rheological behaviour of modified ADA-GELs cooling down from 37 °C after 5 min and 

after 20 min. Left: ADA-GEL-T70°C_6h. Second from left: ADA-GEL-T80°C_3h. Second from right: ADA-GEL-T80°C_6h. 

Right: ADA-GEL-T95°C_3h.

The yield stress plays an important role in hydrogel-ink formulations since it defines the shear 

stress for material flow initiation. Fig. 4 E depicts the shear stress ramps of the ADA-GELs. 

Shear stress ramps allowed the characterisation of the yield stress of the material, below which 

the material behaved rather like a solid than like a liquid. Highest yield stresses were found 

with ADA-GEL-T80°C_3h (489.7 Pa) and ADA-GEL-T70°C_6h (489.4 Pa) followed by ADA-GEL-TRef 

(345.9 Pa), ADA-GEL-T80°C_6h (248.2 Pa), and ADA-GEL-T95°C_3h (140.1 Pa). ADA-GEL-T80°C_6h 

and ADA-GEL-T95°C_3h exhibited much lower yield stresses indicating the impact of precursor 

modification and its role in the improvement of the rheological properties for hydrogel 

printability. Additionally, 70°C_6h and 80°C_3h samples demonstrated significantly higher 

yield stress points than the other compositions (Fig. 4 E + SI Table 5). Paxton et al. determined 

the yield stress of 20 wt% poloxamer 407 (93.6 Pa), 25 wt% poloxamer 407 (227 Pa), 30 wt% 

poloxamer 407 (348 Pa), Nivea Crème (72.1 Pa), and from 8 % w/v / 1 % w/v alginate-gelatine 

blend (166 Pa) [35]. Yield stresses were found to have similar orders of magnitude. Compared 

to Paxton et al. [35], however, ADA-GEL-T80°C_3h and ADA-GEL-T70°C_6h featured higher yield 

stresses. Yield stresses of ADA-GEL-TRef and 30 wt% poloxamer 407 were similar. Just as 

with 8 % w/v / 1 % w/v alginate gelatine blend and ADA-GEL-T95°C_3h. It was observed that the 

yield point viscosities for ADA-GEL-T70°C_6h and ADA-GEL-T80°C_3h were above 5 Pa.s and 

therefore significantly higher than for the other formulations. Moreover, all samples showed a 

shear-thinning behaviour, characterised by a decrease in complex viscosity over an increasing 

shear rate (Fig. 4 B). Information about shear thinning is crucial for the printability of hydrogels 

since it is responsible for a smooth material extrusion without clogging [36]. ADA-GEL-T95°C_3h 

exhibited significantly lower viscosities over the shear rate ramp compared to the other ADA-

GELs. Viscosity values of ADA-GELs were in accordance with the gelatine concentration and 

degree of denaturation used in the ADA-GEL hydrogel, with ADA-GEL-T80°C_3h featuring the 

highest viscosities in the examined frequency spectrum. In theory, shear-thinning of the ADA-

GELs could be caused by disentanglements of polymer chains during flow. Hence, when 

sheared, ADA-GELs would disentangle and aligned which would cause the viscosity to drop. 

The degree of disentanglement depended on the shear rate. At sufficiently high shear rates 

the polymer chains could be completely disentangled and fully aligned. In this range, the 



viscosity would be independent of the shear rate featuring plateau-like regions like it was seen 

for each ADA-GEL sample (Fig. 4 B) [37]. The recovery behaviour of hydrogel inks was 

especially important for the post-printing behaviour of each printed strand. Physically, recovery 

allows the material to rapidly increase in viscosity after extrusion and to maintain a high shape 

fidelity [35]. Figure 4 C shows the recovery results for the ADA-GEL compositions. ADA-GEL-

T70°C_6h, as well as ADA-GEL-T80°C_3h, showed the fastest recoveries after application of the 

high shear rate compared to the ADA-GEL-TRef. This could also be attributed to the higher 

content of gelatine in comparison to ADA-GEL-TRef. Despite the gelatine denaturation, the 

higher polymer concentrations could lead to more interactions and entanglements between the 

polymer chains. By comparison, ADA-GEL-T95°C_3h showed the worst recovery behaviour due 

to the highest gelatine denaturation by the temperature treatment, proving its impracticality for 

further printing. However, all ADA-GEL hydrogels were not able to fully recover in the following 

100 s after extrusion (Fig. 4 E). In general, longer recovery times led to a decrease in the 

retention of cylindrical fibre formation and shape fidelity (Fig. 6 E). To achieve printability 

improvements, the ADA concentration could be increased to gain a denser polymer network 

with more possibilities for entanglements and therefore faster recoveries. Temperature sweeps 

were conducted to characterise the thermoresponsive properties of the ADA-GELs. 

Thermoresponsivity could be employed to cause changes in viscoelastic properties required 

for successful extrusion and solidification into 3D constructs with high shape fidelity after 

printing. Thermo-responsivity was characterised by a change in a material’s viscoelastic 

properties as a result of temperature change (Fig. 4 D). During bioprinting, temperature 

enables the control of the hydrogel viscosity. An increase of viscosities could be seen for all 

ADA-GELs upon cooling (Fig. 4 D, ramp from 40 °C to 20 °C), due to increasing entanglements 

and alignments of polymer chains trying to restore their natural conformation upon cooling. 

Hence, initially isolated colloidal aggregates present in suspension crosslinked to form a three-

dimensional, viscoelastic network featuring higher viscosities [38]. Since the temperature 

sweeps were conducted by cooling from 40 °C to 20 °C viscosity values at 25 °C appeared 

relatively low in comparison to other sweeps since gelation still had to take place. Regarding 

biofabrication, previous studies have shown that adding high cell numbers (> four million/ml-

1) significantly reduces final ADA-GEL hydrogel stiffness [39]. It has been shown for a gelatin-

based hydrogel that increasing cell concentration reduces bioink viscosity [40]. As a result, 

those studies imply that our biomaterial ink may show reduced viscosity for high cell numbers, 

which may impact the printability and rheological properties of the here presented hydrogel 

composition. In this study, we focused on the engineering and design of an ADA-GEL 

composition with increased printability to produce biomaterial scaffolds that do not contain 

cells. In future studies, we will assess the influence of higher cell concentrations on the final 



hydrogel rheological properties, which will provide important implications for future 

biofabricaton approaches with the here presented, optimized ADA-GEL matrix.

3.3 Nanoindentation

Fig. 5 shows the effective Young’s modulus of ADA-GEL samples crosslinked with 0.1 M and 

0.5 M CaCl2 for 10 min. Samples measured at RT and 37 °C were compared. At 37 °C, the 

effective Young’s moduli were significantly lower than at RT for all ADA-GEL samples. This 

decrease in the stiffness could be explained by the fact that gelatine is a thermo-reversible gel 

featuring a characteristic melting point of 37 °C [41]. Hence, the greater the gelatine content in 

the ADA-GEL, the greater the impact of temperature increase. ADA-GEL-TRef showed a 

smaller drop in stiffness. This could be attributed to the degree of crosslinking between ADA 

and gelatine, which is dependent on GEL-to-ADA ratio. Sarker et al. reported that a high 

crosslinking degree of ADA-GEL with lower gelatine content can be explained by the 

availability of more reactive aldehyde groups of ADA. High ADA content could promote the 

extent of crosslinking with the free amino groups of gelatine [20]. In contrast, ADA-GEL 

compositions with high gelatine content had comparatively lesser amounts of reactive 

aldehyde groups for crosslinking [29]. In conclusion, the combination of concentration, the 

degree of crosslinking and Ca2+ gelation influenced the mechanical properties of the ADA-GEL 

system. Calcium-induced gelation has been demonstrated to result from specific and strong 

interactions between calcium ions and guluronate blocks in alginate, respectively. Hence, 

increased CaCl2 concentrations led to slightly higher effective Young’s moduli. This result is in 

agreement with the results of Remunan-Lopez et al. who described increasing mechanical 

properties of alginate as a function of increasing CaCl2 concentrations [42]. Corresponding to 

strong gelatine denaturation, ADA-GEL-T80°C_6h and ADA-GEL-T95°C_3h exhibited lower stiffness 

values and stronger stiffness drops at 37 °C compared to the ADA-GEL-TRef, despite higher 

gelatine concentrations. ADA-GEL-T80°_3h and ADA-GEL-T70°C_6h, however, exhibited lower 

degrees of degradation which resulted in similar stiffness values compared to the ADA-GEL-

TRef due to the additional gelatine concentration [41]. Compared to the results of Zehnder et al. 

[11], significantly lower stiffness values were achieved in this work despite the same 

composition (ADA-GEL-TRef), the same crosslinking agent as well as the same crosslinking 

time. The only difference was the source of alginate. A possible reason could be that Zehnder 

et al. used sodium alginate with a high guluronic acid content of 65 % – 70 %. It is known that 

calcium primary cross-links the guluronic residues. Because of high guluronic acid contents in 

the alginate, the gel strength could be dramatically increased [43]. Since in this work alginate 

was changed to GRINDSTED® Alginate PH 176 featuring a molecular weight of 250000 g/mol 

but unknown guluronic acid/ mannuronic acid ratio, it was considered that this alginate had a 

significantly lower guluronic acid content, which could result in lower Young’s moduli. Studies 



have shown clear correlations between elastic moduli of hydrogel matrices and proliferation as 

well as differentiation of encapsulated cells [44].

Figure 5: Effective Young’s moduli of ADA–GEL samples crosslinked with 0.1 M and 0.5 M CaCl2 measured at A: 
room temperature (RT) and B: 37 °C. The asterisks indicate differences with p < 0.05 obtained from Bonferroni test.

Yet, Zehnder et al. [11] followed a bone tissue engineering approach in contrast to this work 

which made higher moduli necessary for a suitable bone cell environment. The elastic modulus 

of mammalian chondral tissue (matrix around chondrocytes) (~ 25 ± 5 kPa), however, is lower 

than the one of bone (cortical bone ~ 15 ± 5 GPa) [45,46].  In comparison to these values, 

elastic moduli of ADA-GEL samples crosslinked with CaCl2 are in the range of soft tissue 

elastic moduli (~ 4 ± 2 kPa) [45]. This indicates a suitable environment for cell encapsulation 

for cartilage tissue engineering since both matrix stiffness and composition are important for 

the retention of tissue-specific cell functionality [47]. However, the optimal value of the elastic 

modulus may depend on the cell type.

3.4 Printability

Heat pre-treatment of gelatine solutions significantly affected the printability of ADA-GEL 

formulations. These formulations were evaluated regarding printing accuracy, strand width, 

resolution, printing pressure, uniformity factor (U), pore factor (Pr), gelation times, and shape 

stability as well as fidelity in the z-direction. The material selection of ADA-GELs showed 

printing accuracies of over 90 % with slightly higher values compared to the ADA-GEL-TRef due 

to the higher concentrations of modified gelatine which led to a greater amount of polymer 

chain interactions like entanglements and crosslinks in the hydrogel (Fig. 7 A). Due to higher 

degrees of degradation gelatines dissolved at higher temperatures led to smoother strand 

appearances (Fig. 6). A smoother strand appearance of an ADA-GEL with highly denatured 

gelatine content could be expected (Fig. 6 D) since gels of lower viscosities showed a more 



Figure 6: Printability assessment. A: Resolution structures. From left to right: CAD-File, ADA-GEL-T70°C_6h, ADA-

GEL-T80°C_3h, ADA-GEL-T80°C_6h, ADA-GEL-T95°C_3h, ADA-GEL-TRef. B: 3D printed ADA-GEL-Grids. From left to right: 

ADA-GEL-T70°C_6h, ADA-GEL-T80°C_3h, ADA-GEL-T80°C_6h, ADA-GEL-T95°C_3h, ADA-GEL-TRef, Scale: 2000 µm. C: 3D 

printed ADA-GEL-Single-Layer. From left to right: ADA-GEL-T70°C_6h, ADA-GEL-T80°C_3h, ADA-GEL-T80°C_6h, ADA-

GEL-T95°C_3h, ADA-GEL-TRef, Scale: 2000 µm. D: 3D printed ADA-GEL-Strands. From left to right: ADA-GEL-

T70°C_6h, ADA-GEL-T80°C_3h, ADA-GEL-T80°C_6h, ADA-GEL-T95°C_3h, ADA-GEL-TRef, Scale: 500 µm. E: Obtainable 

height stability using ADA-GEL-TRef. F: Obtainable height stability using ADA-GEL-T80°C_3h.

fluid-like behaviour and broadened strands due to a less dense polymer network and fewer 

entanglements of polymer chains [48]. The thinnest strands of approximately 0.52 mm were 

printed with formulations of ADA-GEL-T70°C_6h and ADA-GEL-T80 °C_3h. By using a precision tip 

needle with an inner diameter of 0.41 mm, the logical consequence was that the thinnest 

possible strand matched this exact value. The thinnest strands observed were 29 % larger 

than this inner diameter. However, this width increase could be expected due to gravity and 

surface energy and tension [49]. Increases of strand diameters in 3D structures could be 

further explained by the additional weight of the higher layers. Resolutions (= required strand 

distances to avoid merging strands) were determined using self-designed printed resolution 

structures (Fig. 6 A). Resolution structures supported the results of strand widths and 



accuracies. ADA-GEL-T80°C_3h featured the lowest possible distances between printed strands 

(≈ 0.68 mm) to avoid strand merging in the same layer with significant differences to ADA-

GEL-T80°C_6h, ADA-GEL-T95°C_3h, ADA-GEL-TRef. Low viscous ADA-GELs with high denatured 

gelatine content further led to higher gelation times and lower printing pressures (Fig. 7 D+G). 

Since encapsulated cells in hydrogel-inks experience shear forces during the printing process, 

lower printing pressures could be favourable [50]. The comparatively low printing pressure of 

the reference composition might be traced back to its lesser content of not pre-treated gelatine. 

No significant differences (0.05 level) were found comparing the uniformity factors of the 

examined ADA-GELs (Fig. 7 E). Uniformity factors (U) ranged from 1.02 to 1.08 showing only 

slight deviations from a perfectly uniform strand (U = 1).

Figure 7: Printability evaluation. A: Printing accuracies derived from ADA-GEL-Grids. B: Strand width comparison. 

C: Resolutions (= Required strand distances to avoid merging strands). D: Printing pressures. E: Uniformity factor 

comparison. F: Pore factor comparison. G: Gelation times before 3D printing is possible. H: Schematic of uniformity 

(U) and pore (Pr) factor ranges (redesigned from Soltan et al. [13]). The asterisks indicate significant differences 

with p < 0.05 obtained from Bonferroni test.



The best uniformity factors (comparing average values) could be achieved with ADA-GEL-

T80°C_3h (1.03 ± 0.02), ADA-GEL-T80°C_6h (1.03 ± 0.02), and ADA-GEL-T95°C_3h (1.02 ± 0.02) 

followed by ADA-GEL-TRef (1.07 ± 0.01) and ADA-GEL-T70°C_6h (1.08 ± 0.01). Compared to 

Soltan et al. [13] slightly higher uniformity factors were found in this work. This result could be 

explained with an overall higher final concentration of ADA and gelatine, as well as higher 

printing pressures in combination with lower printing speeds (2 mm/s compared to 25 mm/s). 

ADA-GELs with gelatine content heat pre-treated at 80 and 95 °C exhibited mean uniformity 

values which were closest to a perfect uniform strand (Fig. 7 E). This result is in accordance 

with the qualitative uniformity comparison of heat pre-treated 3D printed gelatine strands of 

Kolesky et al [51]. Gelatine heat-treated at 95 °C was shown to exhibit more uniform strands 

after 3D printing than gelatine heat-treated at 70 °C. Pore factors (Pr) ranged from 1.02 to 1.23. 

These factors are close to a perfectly-gelled hydrogel-ink (Pr = 1) with slight tendencies to an 

over-gelled material (Pr > 1). Best results could be achieved with ADA-GEL-T80°C_3h (1.05 ± 

0.02), ADA-GEL-T95°C_3h (1.03 ± 0.06) and ADA-GEL-TRef (1.02 ± 0.05) followed by ADA-GEL-

T70°C_6h (1.11 ± 0.06) and ADA-GEL-T80°C_6h (1.23 ± 0.1). Compared to the results of Soltan et 

al. [13], pore factors were closer to 1.  Soltan et al. [13] reported a mainly under-gelled ADA-

GEL behaviour most likely due to lower final concentrations of ADA and gelatine as well as no 

rheological tunability using gelatine denaturation. To assess shape stability and fidelity in 

higher layers, high multilayer structures were printed. Only ADA-GEL-T80°C_3h provided the 

necessary shape stability to maintain its structure throughout the whole printing process of 

over 50 layers achieving heights of over 1 cm (Fig. 6 F).  Gelatines treated at 80°C for 6 h or 

in general at 95 °C resulted in formulations with deficient viscosity to achieve scaffolds with a 

sufficient height or stability. This was an expectable result since already the 2D grids featured 

a fluidic behaviour expressed by thick and merging strands which prohibited shape stability 

and layer stacking (Fig. 6 A-D). After the evaluation and consideration of all requirements, 

ADA-GEL-T80°C_3h was found to possess the best printing characteristics. In comparison to the 

reference ADA-GEL composition of Zehnder et al. [11], higher printing accuracies, better 

resolution and higher shape stability could be achieved by composition adjustments as well as 

structural modifications of the precursors. Hydrogel ink development as well as printing 

parameter adjustments were the crucial first steps to enable hierarchical 3D printing as a 

biomimicry approach towards cartilage tissue engineering. The first approach for hierarchical 

printing was the creation of a scaffold featuring layers with varying densities from bottom to 

top. Furthermore, to overcome the usual layer stacking approach of 3D plotting a programme 

was written via G-code. The G-code enabled hydrogel extrusion during a print-head movement 

in z-direction. Hence, a standard scaffold structure was printed on a dense bottom layer to 

support vertically printed pillars (Fig. 8 C+D). The dense bottom layer resembles the superficial 

zone whereas the pillars mimic the deep zone of natural cartilage tissue (Fig. 8 E).



Figure 8: ADA-GEL-T80°C_3h scaffolds. A: Hierarchical scaffold development Top: CAD-Files of single layers which 

are stacked for a 3D hierarchical print forming a hierarchical scaffold with density gradient (Top right). Center: 3D 

print execution. Scale: 2 mm. Bottom: Critical point dried hierarchical scaffold. Left: Bottom view. Right: Top view. 

B: Freeze-dried scaffold as a result of shape stability testing in higher layers. Left: Side View. Scale: 2 mm. Right: 
Bottom view. Scale: 1 mm. C: Critical point dried hierarchical scaffold as a biomimetic approach towards cartilage 

tissue featuring pillars printed in the Z-direction. D: Bottom view, biomimetic approach. E: Structure of natural 

cartilage tissue [2]. F: Institute of Biomaterials Erlangen logo (WW7) 3D printed with ADA-GEL-T80°C_3h and critical 

point dried.

µ-CT analysis revealed the micro- and macroporous structures of critical point dried 3D printed 

ADA-GEL80°C_3h scaffolds throughout XY (top view) and XZ (side view) planes (Fig. 9). The 

comparison of µ-CT images of various XY and XZ planes of a scaffold offered information 

about its porosity gradient. In this work, µ-CT data of a scaffold reference with consistent strut 

density was compared to the three-layered hierarchical scaffold (Fig. 9 A+B). Despite its 

homogeneous design, the reference cylinder featured a heterogeneous porosity gradient. 

Comparing its upper XY 130 plane with the subjacent XY 180 plane it becomes apparent that 

lower layers were consolidated (Fig. 9 A). In numbers, the pore diameter decreases from 1.29 

mm to 0.61 mm (Fig. 9 C) as well as the overall porosity from 64.73 % to 37.76 % (Fig. 9 D). 

This consolidation process could occur due to the gravitational force acting on printed strands 

and due to the additional weight of the higher layers. As a consequence, the scaffold structure 

appears bent due to strut sedimentation. The µ-CT evaluation of the examined hierarchical 

structure demonstrated how the physicochemical modification of gelatine improved the 3D 

printability of the ADA-GEL ink and enabled the tunability of the internal scaffold porosity 

gradient. This is an important characteristic of a biomimetic cartilage tissue engineering 

approach [2]. XZ and XY µ-CT images displayed decreasing pore diameters (from 1.45 mm to 

0.23 mm) as well as decreasing overall XY plane porosities (from 81.66 % to 30.98 %) from 



top to bottom (Fig. 9 C+D). This achieved tunability of pore sizes met tissue engineering 

demands. Pore sizes in the range of 20 µm - 500 µm are crucial in tissue engineering since 

they are suitable for cell ingrowth, bone regeneration as well as vascularization [52–54]. 

Furthermore, pore sizes and porosities were in the same order of magnitude compared to other 

3D scaffold fabrication techniques for cartilage tissue engineering. For example, Tamaddon et 

al. [55] showed that freeze-dried type II collagen scaffolds with pore sizes ranging from 50 µm 

– 300 µm and an overall porosity of over 99 % featured a suitable environment for human bone 

marrow mesenchymal stem cells and their differentiation towards chondrocytes. However, 

chondrogenic differentiation was especially promoted by using chondroitin sulfate [55]. Lee et 

al. generated salt leached and solvent cast 3D scaffolds made of poly(L-lactide)-g-chondroitin 

for cartilage tissue engineering. An average pore size between 50 and 250 µm with an overall 

porosity of over 85 % was reported [56]. 

Figure 9: µ-CT images of critical point dried ADA-GEL80°C_3h scaffolds. A: Reference Cylinder with consistent strut 

density. B: Hierarchical scaffold with varying strut densities (introduced in Fig. 8 A). C: Pore diameters. D: Porosities 

(absolute values) in XY planes.



4. Conclusions
In this study, hierarchical extrusion-based bioprinting of ADA-GEL was demonstrated for 
applications in cartilage tissue engineering. 3D-bioprinting was used to manufacture 
hierarchical scaffolds in a biomimetic approach to recapitulate the heterogeneous structure of 
the native cartilage tissue. Hydrogel precursor modification via thermal pre-treatment of 
gelatine enabled modifiable mechanical and rheological characteristics of the ADA-GEL 
material. Therefore, an advance in ADA-GEL hydrogel applications could be presented due to 
a significantly improved printability in comparison to previous studies [11]. Gelatine solutions 
were exposed to 37, 70, 80 and 95 °C for periods of 3 h and 6 h before ADA-GEL solution 
preparation and compared to prior investigated ADA-GEL compositions [57]. Substantiated by 
rheological characterization via time-, amplitude-, frequency-, recovery-, and temperature 
sweeps, ADA-GEL-T80°C_3h was found to feature the most favourable printability characteristics, 
enabling hierarchical layer deposition with high shape stability. The new ADA-GEL formulation 
allowed the design of hierarchical scaffolds mimicking the intrinsic hierarchical structure of 
natural cartilage tissue. Scaffolds with heights of over 1 cm could be printed. µCT analysis 
confirmed the fabrication of open porous, hierarchically structured scaffolds. Therefore, in 
future experiments, these scaffolds combined with chondrocytes could offer a rapidly 
accelerated healing process for damaged or diseased cartilage tissue thanks to directed 
organized cell orientation and new tissue formation. Nanoindentation proved that the hydrogel 
stiffness could be tuned by varying the gelatine pre-treatment temperature as well as by 
varying the concentration and type of crosslinking divalent ions. In summary, the results have 
implications for advancing cartilage TE investigations. The scaffolds fabricated in this study 
could be used as complex-structured, 3D-printed hierarchical templates for in-vitro cell seeding 
in matrix-associated cartilage implant strategies in the future.
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