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Abstract 

Electrospinning is a technology for manufacture of nano- and micro-sized fibers, which can 

enhance the dissolution properties of poorly water-soluble drugs. Tableting of electrospun 

fibers have been demonstrated in several studies, however, continuous manufacturing of 

tablets have not been realized yet. This research presents the first integrated continuous 

processing of milled drug-loaded electrospun materials to tablet form supplemented by 

process analytical tools for monitoring the active pharmaceutical ingredient (API) content. 

Electrospun fibers of an amorphous solid dispersion (ASD) of itraconazole and 

poly(vinylpyrrolidone-co-vinyl acetate) were produced using high speed electrospinning and 

afterwards milled. The milled fibers with an average fiber diameter of 1.6 ± 0.9  µm were 

continuously fed with a vibratory feeder into a twin-screw blender, which was integrated with 

a tableting machine to prepare tablets with ~ 10 kN compression force. The blend of fibers 

and excipients leaving the continuous blender was characterized with a bulk density of 0.43 

g/cm
3
 and proved to be suitable for direct tablet compression. The ASD content, and thus the 

API content was determined in-line before tableting and at-line after tableting using near-

infrared and Raman spectroscopy. The prepared tablets fulfilled the USP <905> content 

uniformity requirement based on the API content of ten randomly selected tablets. This work 

highlights that combining the advantages of electrospinning (e.g. less solvent, fast and gentle 

drying, low energy consumption, and amorphous products with high specific surface area) 

and the continuous technologies opens a new and effective way in the field of manufacturing 

of the poorly water-soluble APIs. 
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1. Introduction 

A large portion (up to 75%) of small molecule drug candidates in today’s development 

portfolio has poor water solubility and is one of the main challenges in the pharmaceutical 

industry (Williams et al., 2013). Amorphous solid dispersions (ASDs) are a common 

technology and effective way to enhance the dissolution properties of poorly water-soluble 

molecules (Jermain et al., 2018; Pandi et al., 2020). Several techniques are known to prepare 

ASDs among which spray drying and hot-melt extrusion are the most typically used (Jermain 

et al., 2018; Pandi et al., 2020). However, electrospinning is also a very gentle and promising 

continuous method since it is capable of drying at ambient temperature and operates at 

atmospheric pressure (Yu et al., 2018). Furthermore, the energy consumption and the solvent 

needs during ES are favorable compared to the other solvent-based ASD preparation methods 

(Drosou et al., 2017; Kang et al., 2020; Levit et al., 2018; Sóti et al., 2015; Vass et al., 2019a). 

Although the mentioned advantages make the technique suitable for pharmaceutical 

applications, there are still some key challenges that need to be addressed. 

Besides increasing the dissolution of the potential drug molecules, the development of 

the technologies and integration of continuous manufacturing (CM) processes is a hot topic 

nowadays in the pharmaceutical industry too. The marketed products prepared by CM and the 

increasing number of publications about CM show that continuous technologies get more and 

more attention in the pharmaceutical field (Burcham et al., 2018; Lawrence and Kopcha, 

2017). Nonetheless, there are two FDA-approved CM medicines contain spray-dried samples, 

which indicate the opportunities in the simultaneous application of ASDs and CM (Szabó et 

al., 2019). Although spray drying is a widely used method with high productivity, only a few 

publications have been published relating to the CM of spray-dried materials to tablets (Adali 

et al., 2020; Hu et al., 2011; Vanhoorne et al., 2016). From the industry point of view, the two 

FDA-approved spray-dried material-loaded CM medicines confirm that the topic has great 

industrial relevance. Using CM in the case of other ASDs products might also be effective 

with respect to the practical application since a high volume of ASD-loaded products are 

manufactured year by year and the cost of production or the energy consumption can be 

reduced in this way (Burcham et al., 2018; Pandi et al., 2020). However, it is worth keeping in 

mind that the handling of products with poor flowability is a general challenge for tablet 

development and it is even more difficult during the CM of spray-dried samples or 

electrospun materials with low bulk densities (Al-Zoubi et al., 2021). Therefore, overcoming 

the flowability problems of critical materials such as active pharmaceutical ingredients (APIs) 

                  



or ASDs is a crucial part of continuous process development (Besenhard et al., 2016; 

Chattoraj and Sun, 2018; Pingali et al., 2009; Szabó et al., 2019). 

In general, one of the most critical parts of continuous tablet preparation is the feeding 

because it has a great influence on the homogeneity and the content uniformity of the blend 

and later the tablets (Blackshields and Crean, 2018). Consequently, the feedability of 

materials with poor flow properties needs to be improved with different formulation 

techniques. In the case of APIs or poorly flowable excipients, the most common method is 

coating the given material with silica, which improves the flowability and thereby the 

performance of the feeding (Escotet-Espinoza et al., 2020; Kunnath et al., 2018; Mullarney et 

al., 2011). Besides, the feedability enhancement can also be done through equipment design, 

for instance via application of vibratory feeders since the danger of clogging, and electrostatic 

charging of the particles is less than in the case of the twin-screw feeders (Besenhard et al., 

2016). However, not only accurate feeding but also effective blending is important to prepare 

appropriate tablets continuously. The homogeneity of the blend largely depends on the 

process parameters of the continuous blending thus the determination of the influencing 

factors is a significant element of the process development (Liu et al., 2018; Vanarase et al., 

2013). 

Furthermore, introducing the process analytical technology (PAT) principles, the drug 

content needs to be monitored during the continuous blending to produce good quality 

products. Besides, the use of in-line analytical methods may contribute to the feedback control 

of the processes, which is a critical part of CM systems (Nagy et al., 2017). To accomplish 

quick, real-time determination of the API content, different non-destructive in-line analytical 

tools must be applied (De Beer et al., 2011). A widely used method is the near-infrared (NIR) 

spectroscopy, which has been already used successfully in many continuous blending 

processes (Colón et al., 2014; Koller et al., 2011; Vanarase et al., 2010). Similar results can be 

achieved by Raman spectroscopy since the organic API molecules have strong signals in the 

Raman spectrum (Nagy et al., 2019; Vergote et al., 2004). The real-time monitoring of the 

homogeneity and drug content has an important role in the process development because the 

effect of different parameters can be followed continuously (Martínez et al., 2013). 

CM of electrospun material containing tablets is a rarely researched area because the 

industrial relevant scaled-up production of API-loaded fibers has not yet spread. The 

commonly used single needle electrospinning apparatus has very low productivity, circa 0.01-

1 g/h (Vass et al., 2019c); therefore, it of limited use for ASDs where production rates of 

double digit kg/h are typically required (Jermain et al., 2018; Pandi et al., 2020). To achieve 

                  



the necessary production rate, different electrospinning principles and equipment designs have 

been researched to increase the efficiency of the technology (Vass et al., 2019c). For instance, 

the multi-jet electrospinning utilizes more needles (Kumar et al., 2010), the free surface 

electrospinning methods are based on the curvature formation of the solution surface (Ahmed 

et al., 2020; Jiang and Qin, 2014), the alternating current electrospinning replaces the 

common used direct current techniques (Farkas et al., 2019; Kessick et al., 2004), and high 

speed electrospinning (HSES) takes the advantage of both electrostatic forces and centrifugal 

forces (Nagy et al., 2015). The latter can be very promising from the pharmaceutical 

application point of view since even a 450 g/h production rate is achievable and the 

technology is considered scale-able (Nagy et al., 2015) and is similar to rotary spray dryers, 

which are scale-able to large capacity (Masters, 1985). 

 The second main question relates to the conversion of the electrospun fibers into a 

final dosage form. Although preparing orally dissolving webs via electrospinning is an easy 

and possible solution for pharmaceutical usage (Balogh et al., 2018; Celebioglu and Uyar, 

2019; Sipos et al., 2019), the manufacture of the most commonly used dosage forms of 

capsules and tablets using electrospun fibers is more complicated due to their physical 

properties such as low bulk density or the fibrous structure (Démuth et al., 2017). The 

tableting of the pure electrospun products seemed to be possible in lab-scale (Hamori et al., 

2016) but an industrially relevant process requires the application of the appropriate 

downstream steps and the suitable excipients (Démuth et al., 2016; Vass et al., 2019b). 

Besides, coupling continuous processing steps to the electrospinning is also challenging since 

the electrospun products with low bulk density can cause difficulties during the feeding, 

blending and tableting (Szabó et al., 2018). Increasing the flow properties of fluffy fibers via 

milling is the key point for preparing tablets (Vass et al., 2019b). 

The main goals of the current research were to investigate the continuous downstream 

processing of milled electrospun fibers to tablet form for the first time and to develop in-line 

analytical methods for determining the ASD content, and thus the API content in real-time. 

An integrated system consisting of continuous feeding, blending and tableting was tested for 

the continuous manufacture of electrospun materials. Furthermore, the comparison of two 

non-destructive, in-line analytical tools, namely NIR and Raman spectroscopy, was also 

performed to investigate their applicability during continuous downstream processing of 

electrospun samples. The development of a fully continuous manufacturing line using 

electrospinning coupled with the appropriate PAT tools might be very promising in the 

pharmaceutical industry for effective manufacture of ASDs. 

                  



2. Materials and methods 

2.1. Materials 

Itraconazole (ITR) and vinylpyrrolidone-vinyl acetate 6:4 copolymer (PVPVA64) 

were obtained from Janssen Pharmaceutica (Beerse, Belgium). Microcrystalline cellulose 

(Vivapur
®

 200) and sodium stearyl fumarate (Pruv
®

) were received from JRS Pharma 

(Rosenberg, Germany). Mannitol (Pearlitol
®

 400DC) was a kind gift from Roquette Pharma 

(Lestrem, France). Crosslinked polyvinylpyrrolidone (Kollidon
®

 CL) was given by BASF 

(Ludwigshafen, Germany). Aerosil
®

 200 was supplied from Evonik Industries (Essen, 

Germany). Reagent grade dichloromethane and ethanol were purchased from Merck Ltd. 

(Budapest, Hungary). 

2.2. High speed electrospinning (HSES) 

Electrospinning of the ITR-loaded fibers was accomplished using HSES equipment, 

which was combined with a cyclone (Figure 1) (Vass et al., 2019a). A fan provided a constant 

120 m
3
/h gas flow rate in the system during the whole production period. The key element of 

the apparatus is the stainless steel, round-shaped spinneret with 36 orifices (d = 500 μm) on its 

edge. This spinneret is connected to a pneumatic air-bearing turbine to reach a high rotation 

speed. The rotation speed of the spinneret was set to 40000 rpm. The preparation of fibrous 

product was carried out at 25 °C  1°C and 45 ± 5% relative humidity, while the applied 

voltage was fixed at 40 kV. The solid material concentration of the investigated composition 

was 0.375 g/ml (consisted of 40% ITR and 60% PVPVA64) and the solids were dissolved in 

the mixture of dichloromethane:ethanol (volume ratio 2:1) (Nagy et al., 2015). The solution 

containing the drug and the polymer was fed with a built-in peristaltic pump 

(Watson−Marlow Fluid Technology Group, Budapest, Hungary) with a flow rate of 1000 

mL/h. 

                  



 

Fig. 1. Schematic drawing (a) and photo (b) of the applied high speed electrospinning (HSES) 

apparatus connected with a cyclone. 

2.3. Milling of the electrospun product 

A QUICKmill Lab multifunctional milling apparatus (Quick2000 Ltd., Tiszavasvári, 

Hungary) was used to reduce the fiber length to increase the bulk density and thereby to 

obtain a powder from the fibrous material with better flow properties (Section 3.1.). The 

equipment can be operated both in oscillating and conical milling mode depending on the 

applied grinding head. During this work, the oscillating mode was chosen due to its higher 

capacity and less material loss. A sieve with holes of 2.0 mm was used for the milling of the 

prepared electrospun sample. The milling rate was adjusted to 200 cycle/min, which resulted 

in circa 200 g/h milling capacity in the case of the investigated ITR-loaded fibrous system. 

2.4. Characterization of the electrospun product 

The basic characterization of the ITR-loaded electrospun material after milling was 

performed using differential scanning calorimetry, X-ray powder diffraction, in vitro 

dissolution testing, scanning electron microscopy, and laser diffraction measurements, as in 

our previous studies (Démuth et al., 2017; Démuth et al., 2018; Nagy et al., 2015). Non-

milled fibers were investigated only by scanning electron microscopy since the non-milled 

samples cannot be examined by laser diffraction and the results of all the other measurements 

did not show any differences between the milled and non-milled samples according to prior 

experiences. Besides, the amount of the residual solvents is also a crucial factor during the 

application of solvent-based methods, which can examine well with headspace gas 

chromatography (Balogh et al., 2018). The method in the case of ITR-loaded fibers was 

similar than in one of our prior studies (Nagy et al., 2012). Our previous researches connected 

to the same composition showed that 700 ppm of ethanol and 300 ppm of dichloromethane 

                  



was found in the ITR-loaded electrospun samples after two days of storage at normal 

circumstances (open air), which values were far under the regulation limits (5000 ppm and 

600 ppm for ethanol and dichloromethane, respectively). During this work, the electrospun 

fibers were used in further experiments only few days later thus residual solvents 

determination was not performed. 

The prepared sample proved to be amorphous (Figure S1 and S2) and showed good 

dissolution (Figure S3). Since the basic characterization of the same composition was detailed 

in our previous studies, only the results of the newest in vitro dissolution tests, the scanning 

electron microscopy records, the particle size analysis and the bulk-tapped density test are 

showed in this paper. Therefore, only the above-mentioned methods are detailed in the 

following subsections. 

2.4.1. In vitro dissolution tests 

In vitro dissolution studies were carried out on a Pharmatest PTWS 600 dissolution 

tester (Pharma Test Apparatebau AG, Hainburg, Germany). The pure electrospun samples and 

the reference crystalline API were examined by the combination of the USP I and USP II 

method (tapped-basket method) (Nagy et al., 2015). The fibrous materials were milled and 

then the powders were weighted into the dissolution baskets. The dissolution of tablets was 

measured with the common USP II (paddle) method. The drug content was 50 mg in each 

case. The applied dissolution media was 900 mL of 0.1 N HCl set at a constant temperature of 

(37 ± 0.5) °C. The stirrer speed by the tapped-basket method and by the paddle method were 

50 and 100 rpm, respectively. An Agilent 8453 UV–Vis spectrophotometer (Hewlett-Packard, 

Palo Alto, USA) was connected to the dissolution tester through flow cells to on-line measure 

the concentration of the dissolved ITR. Based on a preliminarily built calibration at a 

wavelength of 254 nm (from 1 to 50 mg/L), the concentration of the dissolved ITR was 

calculated in real-time during the measurements. Each different sample was investigated in 

triplicate. 

2.4.2. Scanning electron microscopy 

A JEOL JSM 6380LA (JEOL, Tokyo, Japan) type scanning electron microscope 

(SEM) was utilized for examining the morphology and size of the ITR-loaded electrospun 

material. The investigated specimen was fixed with conductive double-sided carbon adhesive 

tape. To avoid electrostatic charging, the electrospun sample was sputtered with gold in the 

next step of sample preparation. The SEM measurement was accomplished in a high vacuum. 

The applied working distance was 15 mm while the accelerating voltage was 15 kV. 

                  



Calculation of the average fiber diameter was performed by a randomized diameter 

determination method (Balogh et al., 2015). 

2.4.3. Particle size analysis 

The particle size distribution of the electrospun sample after milling was determined 

by a Malvern Mastersizer 2000 type laser diffractometer (Malvern Instruments Ltd., 

Worchestershire, UK). Before the measurement, a background recording was adjusted for 45 

seconds. Then a vibratory feeder added the powder into the equipment with 75% intensity of 

the vibrational amplitude. The measurement took 60 seconds while the applied pressure was 

1.5 bar. The measured d(0.5) values were described as the 50% cumulative undersize of the 

volumetric distribution, which was used to characterize the particle size. 

2.4.4. Bulk and tapped density test 

Furthermore, the bulk and tapped densities of the milled electrospun material were 

also investigated using an ERWEKA SVM12 (Heusenstamm, Germany) type tapped density 

tester. The flow property of the powder was determined based on the calculated Hausner ratio 

and the Carr index (Carr, 1965; Hausner, 1967). 

2.5. Continuous blending and tableting 

The targeted API content was 50 mg per 600 mg tablet, which was equal to 125 mg 

40% ITR-loaded electrospun material (  muth et a     0  ). The experimental set-up of 

continuous blending and tableting consisted of two feeders, a twin-screw blender, a conveyor 

belt and a tableting machine (Figure 2).  

 

Fig. 2. Schematic illustration of the continuous experimental set-up. 

The milled ITR-loaded fibers were fed into the blender with a LABORETTE 24 

vibratory feeder (Fritsch GmbH, Idar-Oberstein, Germany). During the experiments, a V-

shaped channel was applied to direct the powder into the blender. The feeding rate could be 

controlled by adjusting the vibration amplitude. Since gravimetric feeding could not be 

                  



performed with this feeder, a pre-calibration of the vibration amplitude and the feeding rate 

was accomplished before each experiment to set the feeding rate to the targeted API content. 

The pre-blend of all other excipients (including the lubricant) was fed with a Brabender 

DDW-MD0-MT type (Brabender Technologie, Duisburg, Germany) twin-screw feeder in 

gravimetric mode. The adjusted feeding rate was 750 g/h to achieve appropriate API content 

in the blend. 

A TS16 QuickExtruder® (Quick 2000 Ltd., Tiszavasvári, Hungary) multifunctional 

equipment was applied for continuous twin-screw blending. The diameter of the screws was 

16 mm, while the L/D ratio was 25. The rotation speed of the screws was set to 70 rpm during 

the continuous blending of the electrospun sample and the excipients. 

After the continuous blending, a conveyor belt carried the existing powder mixture 

from the blender to the tableting machine. The tablets were compressed on a Dott Bonapace 

CPR6 eccentric tableting machine (Limbiate, Italy) using 14 mm round-shaped punches. The 

600 mg tablets were prepared with about 10 kN compression force. The upper and lower 

punches were set before the continuous experiment. 

The continuous line set-up was supplemented with NIR and Raman probe in reflection 

mode to collect real-time spectra of the ITR-loaded powder mixture. Both spectroscopic 

techniques were suitable to obtain spectra of tablets thus off-line investigations after the 

tableting process was accomplished as well. The spectrum accumulation was achieved using 

the OPUS 7.5 (Bruker Optik GmbH, Germany) and iC Raman
®

 (Mettler-Toledo AutChem 

Inc.) softwares during the NIR and Raman spectroscopic analyses, respectively. Besides, 

MATLAB 9.4.0. (MathWorks, USA) and PLS Toolbox 8.6.1. (Eigenvector Research, USA) 

were applied for real-time evaluation of the measured spectra. Two Matlab scripts have been 

developed in-house to get real-time information about the ASD concentration of the blend 

based on the calibration with the electrospun material-loaded powders (Gyürkés et al., 2020; 

Nagy et al., 2017). The first script is aimed to continuously import the acquired spectra into 

Matlab during the experiments, while the second script dealt with the chemometric analysis of 

the spectra using the PLS model built in PLS Toolbox. The second script continuously 

recorded the ASD concentration calculated from the chemometric analysis thus the current 

ITR-loaded electrospun material content could be monitored in real-time during the whole 

continuous blending experiment. 

2.6. NIR spectroscopy 

A Bruker MPA Multi Purpose Fourier-transformed Near Infrared (FT-NIR) Analyzer 

(Bruker OPTIK GmbH, Germany) with a high intensity NIR source (Tungsten) and PbS 

                  



detector was utilized as one of the PAT tools for monitoring the continuous blending and 

investigation of the prepared tablets. The spectra were collect in reflection mode while the 

investigated spectral range was set to 4000-10000 cm
-1

. The resolution of 8 cm
-1

 was applied 

during the measurements and 16 scans were accumulated with double-sided, forward-

backward acquisition mode. 5 spectra per blend and 6 measurements per 3 tablets (both sides 

of each tablet) were used for calibration. 

2.7. Raman spectroscopy 

A Kaiser RamanRxn2
®

 Hybrid in situ analyzer (Kaiser Optical Systems, Ann Arbor, 

USA) equipped with PhAT (Pharmaceutical Area Testing) probe was used for in-line 

detection of the ASD content after the continuous blending. A 400 mW, 785 nm diode laser 

(Invictus) was applied for illuminating the samples. The diameter of the laser spot size was 

adjusted to 6 mm and the nominal focal length was 250 mm. The 200-1890 cm
–1

 spectral 

range was investigated with 4 cm
–1

 resolution and 1690 variables were collected during the 

data processing. Reflection mode was utilized for measuring the calibration samples (blends 

and tablets) and for monitoring the continuous blending process. The tablets prepared after the 

continuous blending were investigated in reflection mode as well. The number of repetitions 

for calibration was the same as in the NIR experiments. The applied acquisition time was 5 

seconds with two scans during the calibration and measuring of blends and tablets. 

2.8. Multivariate data analysis 

Each calibration sample consisted of the mixture of the excipients and the electrospun 

sample in different concentrations. The composition of the excipients-loaded powder was 

chosen based on a prior study and it is summarized in Table 1 (  muth et a     0  ). To 

develop a suitable chemometric model for the target concentration (20.8 w/w% electrospun 

material), the ASD contents of the calibration samples were 0, 5, 10, 15, 20, 20.8, 25 and 30 

w/w%, which are equal to 0, 2, 4, 6, 8, 8.3, 10 and 12 w/w% API content. Besides, 7, 13 and 

22 w/w% ASD-loaded samples were also prepared for validation of the blend models. The 

homogenization of the calibration blend was performed with the previously mentioned 

QUICKmill Lab multifunctional milling apparatus, where the grinding head was changed to a 

batch bin blender. The powder mixtures were homogenized for 5 minutes with a rotation 

speed of 60 rpm. The tablets for calibration were pressed from the prepared calibration 

blends. 

                  



Table 1 

Composition of the excipients powder mixture and the target blend. (ITR abbreviation indicates the 

itraconazole while the PVPV64 acronyms refers to the vinylpyrrolidone-vinyl acetate 6:4 copolymer.) 

Material (function) Concentrations in the blend 

of excipients (w/w%) 

Concentrations in the target 

composition (w/w%) 

Pearlitol®400DC (filler) 42.1 33.35 

Vivapur®200 (filler) 42.1 33.35 

Kollidon®CL (disintegrant) 12.6 10 

Aerosil® (glidant) 1.3 1 

Pruv® (lubricant) 1.9 1.5 

Electrospun sample (40% ITR 

+ 60% PVPVA64) 
- 20.8 

The evaluation was accomplished by using MATLAB 9.4.0. (MathWorks, USA) 

program with PLS Toolbox 8.6.1. (Eigenvector Research, USA). During the evaluation 

process, a calibration curve was determined with the partial least squares (PLS) regression 

method, using the ASD content as dependent variable. Important to note that the milled 

electrospun fibers containing both ITR and PVPVA64 were used in the calibration samples 

thus in the calibration spectra, the spectral signs of the prepared ASD were characteristics and 

not of the pure API. Therefore, the calibration models were built on the ASD content and not 

on the API content. However, the API content of the electrospun fibers was also determined 

by UV-Vis measurements before the calibration. The number of latent variables was chosen 

by minimizing the root mean square error of cross-validation (RMSECV). Interval PLS method 

proved to be suitable in all cases for variable selection, where the number of maximal latent 

variables was changed based on the pretreated PLS model. All of the NIR spectra were pre-

processed using Savitzky–Golay first derivative (a second-order polynomic function was 

fitted, while the number of points in the filter was fifteen, and only included data were 

applied). Multiplicative signal correction (MSC) using the mean spectra as reference and 

mean centering were also applied in the further steps of NIR spectra pretreatment. The Raman 

spectra were smoothed at first with Savitzky–Golay smoothing method (a second-order 

polynomic function was used, while the number of points in the windows was fifteen, and 

only included data were applied). Then all Raman spectra were baseline corrected using 

Automatic Whittaker Filter baseline correction with an asymmetry parameter p = 0.001 and a 

smoothing parameter λ =  0
5
. The Raman spectra of the blends were normalized to unit 

length, which is a widely used weighted normalization method. The intensity of the raw 

spectra showed greater differences (see Figure S5) thus this form of normalization, where the 

larger values were weighted more heavily in the scaling, seemed to be suitable for the spectra 

                  



of calibration powders. The intensity values of the Raman spectra of the different 

concentration tablets were closer to each other; therefore, these raw spectra were normalized 

to unit area, which proved to be appropriate for these data (Figure S5). In the final step of the 

pre-processing, mean centering was utilized in the case of the Raman spectra as well. For 

cross-validation, 6-fold and 7-fold venetian blind cross-validation were used, leaving out one 

sample per concentration levels at each calculation step methods , in the case of the blends 

and tablets, respectively. This validation found to be suitable since the replicate measurements 

were ordered randomly. Besides, external validation was also performed in the case of 

powders, which confirmed the applicability of the built models. 

The models were compared by the coefficient of determination for calibration, cross-

validation, and prediction (R
2

C, R
2
CV, R

2
P), and the root mean square error of calibration, 

cross-validation, and prediction (RMSEC, RMSECV, RMSEP). The performance of the built 

models was also characterized by the limit of detection (LoD) and limit of quantification 

(LoQ), which were calculated by equations 1 and 2 (de Carvalho Rocha et al., 2012). 

Furthermore, the limit of Hotelling T
2
 was calculated in the case of the selected models to 

determine an acceptance limit for the real-time experiment (equation 3) (Nagy et al., 2017). 

    
     

 
 (1) 

    
    

 
 (2) 

                                                   
   

   (3) 

In equations 1-2  σ indicates the standard deviation (SD) of the predicted y-values for 

each x-value; S denotes the slope calculated from the measured and predicted concentrations. 

The calculation of these values are detailed in the supplementary materials (Eq. S1 and S2). In 

equation 3  σHotellingT
2
 means the standard deviation of the Hotelling T

2
 values and Hotelling 

T
2

MAX expresses the largest Hotelling T
2
 value of the given model. 

2.9. Determination of content uniformity 

The content uniformity in the tablets was measured with UV-Vis spectroscopy, which 

was applied as a reference analytical method for verifying the results of the NIR and Raman 

spectroscopy measurements. The same wavelength and calibration were used as for the in 

vitro dissolution tests to determine the ITR concentrations in the tablets. The tablets were 

dissolved in 2 L of 0.1 N HCl dissolution media and stirred with a magnetic stirrer for 2 days. 

The solutions were fi tered through a 0 45 μm fi ter before the UV-Vis measurements. 

                  



2.10. Characterization of tablets 

Friability was measured on PharmaTest PTF 20E (Hainburg, Germany) type friability 

tester after 100 rounds on 10 tablets. Tablet breaking force was determined on a Schleuniger 

4 M (Thun, Switzerland) type hardness tester with 10 tablets. A Sartorius MA40 (Göttingen, 

Germany) moisture analyzer was used for measuring the moisture content of 10 ground 

tablets. Loss in drying was determined at 105°C for 10 minutes. The thickness of the tablets 

was determined with a Pro-Max Electronic Digital Caliper (NSK, Tokyo, Japan). 

                  



3. Results and discussion 

3.1. Preparation of the electrospun and milled samples 

The development of an integrated continuous formulation system requires the 

synchronization of each processing step with respect to capacity. During this research, the 

production rate of the electrospinning experiments was chosen to fit the next milling step, 

while the further steps (feedings, blending, tableting) were adapted to the production rate of 

the milled fibers to see the potential of a possible fully continuous line (from the 

electrospinning to the tableting). The feeding rate of the solution was set to 1000 mL/h, which 

seemed to be suitable to prepare adequate quality fibers (grindable, dry product with small 

fiber diameter). The yield of 78% was reached with the applied process parameters, which 

resulted in ~ 200 g/h production rate for the solid fibrous material. During longer productions, 

the yield of the electrospinning might be further enhanced. On the other hand, the material 

loss was observed on the wall of the drying chamber thus further optimization of the 

formulation and the equipment (e.g. additional air knives in the HSES equipment) could 

further increase the yield. The basic characterization showed similarities to the results of our 

previous articles (data not shown), which means that electrospun fibers containing an ASD of 

40% ITR and 60% PVPVA64 with good dissolution properties (90% released within 10 min) 

were prepared using the aforementioned settings (Nagy et al., 2015). 

Milling of the fibrous products may result macroscopically near round-shaped 

particles with enhanced flowability therefore, it is important to choose well grindable API-

polymer compositions for electrospinning. The ITR-PVPVA64 system was easy to grind with 

an oscillating milling machine right after the ES because the powder did not stick into the 

hole of the sieve and the material loss was less than 5%. The successful milling right after the 

HSES assumes that the fibers dried enough during the continuous fiber collection by cyclone. 

The average diameter of the ITR-loaded electrospun fibers was 1.6 ± 0.9 µm and the fibrous 

structure remained after the oscillating milling (Figure 3). 

                  



 

Fig. 3. Scanning electron microscopic images of the prepared electrospun sample a) before milling 

(100× magnification); b) before milling (4000× magnification); c) after milling (100× magnification) 

(red arrows indicate the entangled fibers); d) after milling (4000× magnification). 

The macroscopic characteristic of the milled product was investigated with laser 

diffraction and the results are shown in Figure 4 and Table 2. The observed multimodal 

particle size distribution with an average diameter of 12.6 ± 1.0 µm can be explained by the 

formation of different sized agglomerates after the milling. The high standard deviations and 

relative standard deviations suggest inhomogeneity in the macroscopic particle size after the 

milling, which can be a critical factor during the downstream processing of the milled fibers. 

The SEM images also presented that the milled fibers became entangled and form smaller and 

larger agglomerates or bundles (Figure 2b). 

                  



 

Fig. 4. The particle size distribution of the ground ES sample. Different colors indicate three repeated 

measurements from the same sample. 

Table 2 

Results of the laser diffraction measurements. 

 d(0.1) d(0.5) d(0.9) 

Average (µm) 2.1 12.6 47.4 

Standard deviation (µm) 0.1 1.0 11.6 

Relative standard deviation (%) 3.5 8.2 24.5 

Although the size distribution of these agglomerates showed higher deviations, the 

flowability of the milled fibers found to be good according to the bulk-tapped density test 

(Table 3) thus the sample seemed to be suitable for further downstream processing steps. 

However, the milled fibrous material still has a low bulk density (~ 0.13 g/cm
3
) and is prone 

to electrostatic charge, which can cause difficulties during the formulation (e.g. the sample 

could stick to the wall of the feeder, blender, and tableting machine and lead to weight 

variations during the processes). For this reason, the application of excipients with good flow 

properties such as large particle size microcrystalline cellulose or mannitol (Démuth et al., 

2017), and effective blending is indispensable to continuously produce tablets. Furthermore, 

the investigated electrospun system with low bulk density revealed that the applicability of the 

powders cannot be predicted based on on y the Hausner ratio and Carr’s index. Wider powder 

characterization can give more information about the materials with respect to the formulation 

processes (Van Snick et al., 2018). 

                  



Table 3 

Results of the bulk-tapped density test. Standard deviations were calculated from three repeated 

measurements. 

ρbulk (g/cm
3
) 0.13 ± 0.01 

ρtapped (g/cm
3
) 0.15 ± 0.01 

Hausner ratio 1.15 ± 0.02 

Carr’s index 13 ± 1.22 

3.2. Preliminary experiments before PAT-based continuous blending and tableting 

Before the continuous blending and tableting experiments in-line analytical methods 

needed to be developed to determine the drug content in real-time. Coupling of in-line 

applicable PAT tools to the CM processes can ensure good quality products. During the 

continuous formulation of electrospun samples, monitoring of the ASD content, and thus the 

API content (section 2.8.) is the key factor from the quality point of view. Preliminary 

experiments showed the applicability of NIR and Raman spectroscopies for the analysis of the 

ITR-loaded electrospun materials during continuous blending. However, the quantitative 

determination of the ASD content required thorough calibration and chemometric model 

building. 

3.2.1. Effect of the lubricant 

One of the crucial parts of the method development was the preparation of the 

calibration samples. The first important question, had to be considered, was how to add the 

lubricant. A possible answer is the feeding of the lubricant directly before the tableting since 

the over-lubrication can be avoided in this way. However, continuous feeding of the 

lubricants with poor flowability may be challenging, therefore a pre-blend with the other 

excipients was more suitable from the CM point of view. For this reason, the effect of the 

sodium-stearyl-fumarate (SSF) on the dissolution was investigated first to see if it could be 

added to the mixture of the excipients before the continuous blending with the electrospun 

material. To test the impact of the lubricant, tablets were prepared in small quantities with 

batch homogenization method. The results showed that the tablets, where the SSF was added 

to the powder mixture with the other excipients and electrospun sample and homogenized for 

30 minutes showed similarities with the dissolution of the tablets, where the SSF was added 

only after the homogenization of the blend for 30 minutes (Figure 5). Although the applied 

homogenization times during the batch blending processes were much higher than the 

residence times during a CM, the dissolution did not deteriorate. Therefore, it can be stated 

that the lubricant does not mean a problem in the case of the examined composition and 

processing steps, thus the SSF was added to the calibration samples as well. 

                  



 

Fig. 5. Investigation of the effect of the lubricant on the dissolution of the ASD-loaded tablets (900 

mL 0.1 M HCl dissolution medium, 37±0.5°C, 100 rpm, paddle method, 50 mg API content, n = 3). 

The physical mixture contained the crystalline ITR, the polymer and the tableting excipients in the 

same concentrations as the ASD-loaded tablets. 

3.2.2. Chemometric model building 

To reduce the time and the material consumption of the calibration, 2.4 g blends were 

prepared at each concentration and measured off-line mode without any special sample 

preparation and destruction. Then the NIR and Raman spectra were pre-processed to find the 

most reliable regression models. Several variable selection methods were also tried for 

choosing the appropriate spectral regions that carry the most information. The raw and the 

pre-processed NIR and Raman spectra of the powders can be seen in Figure S4 and S5, 

respectively. The off-line performance characteristics of the selected models seemed to be 

satisfying according to the R
2
, RMSE and bias values (Table 4). Although the LoD and LoQ 

values proved to be lower for the NIR spectra-based model, the Raman spectroscopy also 

seemed to be appropriate to predict accurately the concentrations around the target value. 

Table 4 

Off-line performance parameters of the selected models. 

 NIR spectra-based model Raman spectra-based model 

Number of latent variables 3 6 

R
2
C 0.994 0.997 

R
2
CV 0.988 0.990 

RMSEC (w/w%) 0.727 0.502 

RMSECV (w/w%) 1.035 1.004 

BiasC (w/w%) 0.000 0.000 

BiasCV (w/w%) -0.013 -0.081 

LoD (w/w%) 2.47 4.93 
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LoQ (w/w%) 7.48 14.93 

The main goal of this work was to develop in-line applicable models to the continuous 

blending thus off-line performance parameters of the models needed to be supplemented with 

other important indicators. Before the real in-line tests, the validation of the selected models 

was accomplished with 7, 13 and 22 w/w% ASD-loaded samples, which were made in the 

same way as the calibration samples but not used during the model building. The validation 

blends were measured five times and the concentrations were predicted by the selected 

models. The predicted values were subtracted from the known concentrations and the 

obtained residuals can be found in Figure 6. The residuals of the repeated measurements were 

below 5 w/w%, which indicates acceptable predicting performance. The higher SDs in the 

case of the 13% ASD-loaded sample can refer to the inhomogeneity of the validation sample 

and not the error of the models since the SDs of the other two investigated concentrations 

proved the be suitable. However, it can be stated that the Raman spectra-based model can 

predict the concentrations more accurately since the SDs of the repeated measurements were 

lower. Furthermore, the averaged results of the Raman-based model showed fewer deviations 

from the known concentration of the compositions; therefore, it could be more promising in 

the in-line applicability point of view than the NIR spectra-based model (Table 5). It is 

important to note that the calculated deviations agree with the LoD and LoQ values of the 

models since the highest differences were observed at the 7% ASD-loaded sample, which 

concentration is below the LoQ values of 7.48 and 14.93 in the case of NIR and Raman 

spectra-based models, respectively. Furthermore, the R
2

P and the RMSEP values were also 

calculated to see the goodness of the models (Table 5). These indicators suggest that the 

Raman spectra-based model can be more accurate to predict in-line the ASD content during a 

real-time continuous blending process. For outlier detection, the critical limit of Hotelling T
2 

values was determined, which were 26.68 and 25.06 in the case of NIR and Raman spectra-

based models, respectively. The Hotelling T
2
 values of the validation samples were far under 

the calculated limits therefore both models seemed to be suitable for in-line application at 

these wider acceptance limits. 

                  



 

Fig. 6. Residuals of the validation samples in the function of ASD content (n=5). 

Table 5 

Prediction performance of the selected models. 

  NIR spectra-based model Raman spectra-based model 

Prediction 

of the 

validation 

samples 

7% ASD 

content  

Average 8.21 7.70 

SD 1.00 0.54 

Percentage 

deviation (%) 
17.34 9.98 

13% ASD 

content 

Average 12.91 13.20 

SD 2.76 1.85 

Percentage 

deviation (%) 
0.73 1.59 

22% ASD 

content 

Average 22.45 21.84 

SD 1.57 1.00 

Percentage 

deviation (%) 
2.06 0.71 

R
2
P 0.917 0.964 

RMSEP (w/w%) 1.874 1.199 

BiasP (w/w%) 0.524 0.250 

3.3. Continuous blending 

3.3.1. Setting of the continuous blending experimental setup 

NIR and Raman spectroscopies seemed to be appropriate to detect the ITR-loaded 

electrospun material in blends thus the next step was to investigate the in-line applicability of 

the built models during the continuous blending process. The continuous experiments 

required the application of suitable devices and setups, where the most critical processing step 

is the continuous feeding of the powders (Figure 7). The preliminary experiments revealed 

that the homogenization of the tableting excipients including the lubricant does not cause 

deteriorated dissolution therefore using a pre-blend during the continuous blending of 
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electrospun materials seemed to be a proper solution. The application of excipients 

composites provide several advantages and has industrial relevance as well since some 

powder mixtures for CM are already on the market (Pharma, 2016). In this way, fewer feeders 

need to be used for continuous blending processes, which decreases the possibility of weight 

variations due to feeding errors. The blend of the excipients was characterized with excellent 

flowability and 0.45 g/cm
3
 bulk density thus it proved to be perfect for a CM process. 

Besides, the feedability of the powder was appropriate and well adjustable using a twin-screw 

gravimetric feeder. Although the feeding of the milled electrospun materials is more 

challenging due to the low bulk densities, a vibratory feeder was suitable for handling the 

prepared ITR-loaded fibers. A further crucial parameter was the rotation speed of the screws 

in the extruder during the continuous blending. On the one hand, if the rotational speed is too 

slow the accumu ation of the e ectrospun samp e in the extruder’s hopper can stop the who e 

process. On the other hand, if the rotational speed is too fast the efficiency of the blending can 

decrease. For this reason, preliminary experiments were performed to find an optimal setting, 

where the rotation speed was changed from 50 rpm that found to be an appropriate setting to 

transport the mixture of excipients. The finally selected rotation speed was 70 rpm since this 

was the lowest adjustment, which proved to be suitable for efficient transport of the incoming 

pre-blend and electrospun fibers together. The bulk density of the outgoing blend was 0.43 

g/cm
3
 and its flowability proved to be appropriate for the tableting. At higher rotational speed, 

the powders were not able to totally fill the screws, which resulted in inhomogeneous blend. 

 

Fig. 7. Photo of the continuous blending experimental setup. 

3.3.2. Real-time monitoring of continuous blending 

                  



To investigate the homogeneity of the outgoing blend in the case of the set rotation 

speed the developed NIR and Raman spectra-based models were applied in a continuous 

experiment (Figure 8). The aim of the continuous blending process was two-fold: to check the 

in-line applicability of the built PLS models, and to prepare homogenous electrospun ASD-

loaded blend continuously, which was never accomplished before according to the best 

knowledge of the authors. At the beginning of the process, only the excipients were fed into 

the blender. Both the NIR and Raman spectra-based models calculated values around 0% but 

the NIR spectroscopy showed some outlier based on the Hotelling T
2
 values, especially at the 

first few measured points. Since the powder layer on the conveyor belt was thinner when the 

excipients were fed, these outliers suggest that the NIR spectroscopy was more sensitive to 

the thickness of the powder flowing under the probe. For this reason, it is worth paying a 

special attention to the sample thickness and because of it to the appropriate selection of the 

screw speed during the continuous blending processes (Nagy et al., 2017). After the feeding 

of the electrospun material, the measured ASD content of the blend increased continuously, 

which was measured well with both applied spectroscopic methods. After emptying the 

vibratory feeder, the ASD content decreased to the starting point according to the NIR and 

Raman measurements, which also confirmed the efficiency of the built models. 

 

Fig. 8. Monitoring of continuous blending by NIR and Raman spectra-based chemometric models. 

Black symbols indicate the outliers from the models according to the calculated Hotelling T
2
 limits. 

Grey background indicates that period when the feeding set up and the system reached a steady-state. 

As expected based on the higher prediction performance values of the NIR validation, 

the NIR spectra-based model showed more outliers based on the Hotelling T
2
 values, 

measured higher concentrations, and resulted in higher SD and relative standard deviation 

(RSD) in steady-state (Table 6). In contrast, the Raman monitoring showed more reliable 

                  



values and the ASD concentrations were closer to the target concentration (20.8 w/w%) 

during the steady-state. It is worth mentioning that the presented work is a proof-of-concept 

relating to the continuous manufacturing of electrospun fibers to tablet forms. Therefore, the 

variability was high from the industrial point of view but standard deviations can be decreased 

when fully integrated lines are constructed. To reach the target concentration more accurately, 

the feed-back control can be applied based on the Raman spectra (Nagy et al., 2017) or a 

gravimetric vibratory feeder could be used to adjust the feeding rate of the ASD. 

Table 6 

The averaged ASD and API content in steady-state. 

 NIR spectra-based model Raman spectra-based model 

ASD content 

(w/w%) 

Average 24.48 22.98 

SD 2.48 1.26 

ITR content 

(w/w%) 

Average 9.79 9.19 

SD 0.99 0.50 

RSD 10.12 5.48 

 

3.4. Characterization of continuously manufactured tablets 

After reaching the steady-state, tablets were prepared and analyzed from the 

continuously blended powder (Figure 9). The obtained average hardness of ten examined 

tablets was 95 N while the loss in drying was 3.34% according to the moisture analysis. The 

thickness of the prepared tablets were between 4.38 and 4.42 mm. Besides, the friability was 

0.67%, which is under the 1.00% regulatory limit determined for uncoated tablets. The 

measured values of the basic characterization methods met the usual pharmaceutical 

requirements and well correlated the previous results of the tablets containing ITR-loaded 

fibers (Démuth et al., 2017). 

 

Fig. 9. Photos about a continuously prepared tablet (a) and a tablet after the hardness test (b) 

For further investigations, ten tablets were selected randomly with an average tablet 

weight of 578.2 mg and measured off-line by NIR and Raman spectroscopy. The evaluation 

of the spectra was performed using the built models from the calibration tablets (Table 7). The 

                  



raw and the pre-processed NIR and Raman spectra of the tablets can be seen in Figure S4 and 

S5, respectively. The off-line performance parameters showed similarities to the models of 

the blends, and the LoD and LoQ values were also below the target concentration. The 

Hotelling T
2
 values of the investigated tablets were well below the acceptance limit, as the 

highest values were 73.54 and 6.42 for the NIR and Raman measurements, respectively. 

Although the tablets were measured off-line, the low Hotelling T
2
 values and the higher 

acceptance limits seemed to be promising thus it would be worth testing the models in-line. 

Table 7 

Off-line performance parameters of the selected tableting models. 

 NIR spectra-based model Raman spectra-based model 

Number of latent variables 5 3 

R
2
C 0.997 0.996 

R
2
CV 0.988 0.993 

RMSEC (w/w%) 0.541 0.620 

RMSECV (w/w%) 1.034 0.820 

BiasC (w/w%) 0.000 0.000 

BiasCV (w/w%) 0.088 0.021 

LoD (w/w%) 3.99 2.09 

LoQ (w/w%) 12.08 6.35 

Hotelling T
2
 limit 280.82 51.17 

The API content of the selected tablets was measured by a reference UV-Vis method 

as well, and the calculated API content results from the three different measurements (NIR, 

Raman, UV-Vis) are depicted in Figure 10. The ITR content of each tablet was in a narrow 

range around the targeted 50 mg dose and the deviation of the average values from the target 

value was less than 5% in all cases (Table 8), which also proved the feasibility of the 

presented CM setup. The API concentration calculated by the three different measurements 

showed similarities, and the average ITR content of the ten tablets was comparable in all 

cases (Table 8). 

                  



 

Fig. 10. ITR content of the randomly selected ten tablets in weight unit calculated from NIR, Raman 

and UV-Vis measurements. The yellow line indicates the target value and the green lines show the 

USP limit (Pharmacopeia, 2007.). 

Table 8 

Content uniformity test of the prepared ITR-loaded tablets.  ̅, s, M and AV numbers given as % label 

claim. M can be determined based on the sample mean. If 98.5 <  ̅ < 101.5 then M =  ̅, if  ̅ < 98.5 

then M = 98.5, if X > 101.5 then M = 101.5. The AV = |M- ̅ | + kS, where k = 2.4 for 10 tablets 

(Pharmacopeia, 2007.). 

 NIR Raman UV 

Average API content of ten tablets (mg) 51.4 50.3 51.7 

SD (mg) 3.5 1.1 2.4 

RSD 6.9 2.2 4.6 

Deviation from the target value (%) 2.8 0.6 3.5 

 ̅ (sample mean) 102.7 100.6 103.5 

s (sample SD) 6.7 2.2 4.4 

M 101.5 100.6 101.5 

AV 17.3 5.3 12.6 

The Acceptance Value (AV) of the tablets calculated by Raman and UV-Vis methods 

were below the L1 = 15.0 acceptance limit, which means that the tablets passed the USP 

<905> content uniformity test (Pharmacopeia, 2007.). Furthermore, the ITR contents of the 

individual tablets were between 37.5 and 62.5 mg, i.e. between 75.0 and 125.0% of the label 

claim (the 100.0% target content was 50 mg in this case). The NIR spectra-based model 

resulted in higher AV due to the higher RSD values but the predicted API contents were 

similar to the results of the other two methods. Besides, the NIR and Raman spectra-based 

models were compared according to the error of the prediction, where the UV-Vis results 

were used as known API content. The RMSEP values were 2.96 mg and 2.52 mg for the NIR 

and Raman spectra-based calculations, which proved to comply with the USP limits. The UV-
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Vis measurements verified the reliability of the NIR and Raman methods, thus the 

traditionally used destructive and off-line UV-Vis analysis could be replaced with the in-line 

applicable, non-destructive NIR and Raman spectroscopy. The quality control can be 

simplified in this way, and it can be characterized as being time-efficient, since the spectra 

recording takes only a few seconds per tablet. Therefore, the API content of each tablet can be 

determined and a fully automated system is achievable, which enables even the 

implementation of real-time release tests (Markl et al., 2020). 

Moreover, the shear forces during the blending process of electrospun materials are 

also crucial factors since a low-shear mixing may lead to unacceptable final homogeneity 

(Fülöp et al., 2018). The results of this work showed that there were no significant standard 

deviations in the content uniformity of the final dosage form, which suggests that the shear 

forces in the twin-screw blender were high enough to distribute the different size 

agglomerates of the milled fibrous material. Besides, volumetric feeding of the API-loaded 

fibers resulted in an appropriate content uniformity, but it could be further improved using a 

gravimetric vibratory feeder. Based on the results, CM of electrospun ASD-loaded tablets is 

achievable, and in-line spectroscopy-based feedback control of the feeders could further 

increase the efficiency of the processes. 

                  



4. Conclusions 

Continuous manufacturing of tablets containing milled ITR-loaded electrospun fibers 

was successfully achieved through a multi-step system including electrospinning, milling, 

feeding, blending and tableting processing steps. The synchronization of the different parts of 

the investigated experimental setup was an important aspect of the work. The adjusted feeding 

rate during the electrospinning resulted in ~ 200 g/h ASD productivity and this value was the 

starting point of the continuous blending as well. For the examined ITR-PVPVA64 

formulation, the results showed that it was possible to produce 600 mg tablets continuously. 

Further developments could enable a fully continuous line integrating electrospinning with 

milling to the continuous tableting process. In that case, the application of the presented 

production rates could result in circa 38.400 tablets/day in the case of the 600 mg tablets with 

50 mg API content. Moreover, further scale-up is also achievable (Nagy et al., 2015), which 

can satisfy the requirements of the pharmaceutical industry. 

Besides, real-time monitoring of the ASD content proved to be achievable using NIR 

and Raman spectroscopy and spectra-based PLS regression models. The off-line performance 

parameters of the models, the validation and the in-line experiments revealed that the Raman 

spectroscopy-based models are more robust and accurate than the NIR spectra-based models. 

The UV-Vis measurements, used as a reference analytical method, confirmed that appropriate 

homogeneity was achieved in the final dosage form, which was well measurable with both 

NIR and Raman spectroscopy with 2.96 mg and 2.52 mg RMSEP values, respectively. 

Furthermore, the prepared tablets fulfilled the USP <905> content uniformity test based on 

the results of UV-Vis and Raman spectroscopy. The implementation of the in-line, non-

destructive methods in the continuous formulation of electrospun material allowed the 

determination of the ASD, and thus the API content in real-time, which reduced the time of 

the quality control from more than a day to 10 s per tablet. Furthermore, the feedback control 

of the excipients feeder based on the Raman spectra and the built chemometric model could 

make the whole continuous system more reliable. The simultaneous application of 

electrospinning and CM was demonstrated well in the present study and the combination of 

these two areas can open new ways in the development and production of effective solid 

dosage forms. 
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